SUPPLEMENTARY INFORMATION

Reuse of iron ore tailing to potassium silicate synthesis and to the production of geopolymers

Lucas Lorenzini,^a Caroline D. Prates,^a Ana Paula C. Teixeira^a and Paula S. Pinto^{b*}

^a Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), 31270-901 Belo Horizonte-MG, Brazil

^b Departamento de Ciências Naturais e da Terra, Universidade do Estado de Minas Gerais (UEMG) unidade Divinópolis, 35501-170 Divinópolis-MG, Brazil *paula.sevenini@uemg.br

1. Determination of %K2O and %SiO2 contents

The K_2O and SiO_2 contents in mass were quantified by titration. For this, 8 g of the product obtained in each of the routes were diluted in distilled water and quantitatively transferred to a 250 mL volumetric flask. This solution was called the "mother solution".

The titration is divided into two steps:

a) Determination of K₂O content

In an Erlemeyer flask, 50 mL of the "mother solution" and the methyl red indicator were added. The K_2O content was determined by titration with a 1 mol.L⁻¹ HCl solution, according to equation 1.

$$\% K_2 O = \frac{Vol_{HCl} \times [HCl] \times 23,5}{ma}$$
 Equation 1

Where:

Vol_{HCl}: volume of HCl solution used in the titration (in mL); [HCl]: concentration of the HCl solution used (in mol.L⁻¹); ma: mass of the sample weighed and transferred to the 250 mL flask (in grams);

b) Determination of SiO₂ content

In an Erlenmeyer flask, 200 mL of distilled water, 5 g of sodium fluoride, 1 mL of HCl solution 1 mol.L⁻¹, methyl red indicator and 50 mL of the "mother solution" were added. The solution is then titrated with HCl until a persistent change in color from yellow to red. The SiO₂ content can be calculated according to equation 2.

$$\% SiO_2 = \frac{Vol_{HCl} (C - B) \times [HCl] \times 7,5}{ma}$$
Equation 2

Where:

 $Vol_{HCl}(C - B)$: volume of HCl solution used in the SiO₂ titration (C) subtracted from the volume of HCl solution used in the K₂O titration (B) (in mL); [HCl]: concentration of the HCl solution used (in mol.L⁻¹); ma: mass of the sample weighed and transferred to the 250 mL flask (in grams);

2. Geopolymers Synthesis

Table S1. Geopolymeric materials produced using standard activator solution, activating solution obtained from solid SR18–3h and use of tailings as filler.

Sample	Composition				
G _{SAS}	50% metakaolin and 50% standard activator solution.				
G _{SR18}	50% metakaolin and 50% activator solution obtained from solid SR18–3h.				
G _{SAS} F ₂₅	37.5% metakaolin, 37.5% standard activator solution and 25% IOT as filler.				
$G_{SR18}F_{25}$	37.5% metakaolin, 37.5% activator solution obtained from the solid SR18–3h and 25% IOT as filler.				
G _{SAS} F ₅₀	25% metakaolin, 25% standard activator solution and 50% IOT as filler.				
G _{SR18} F ₅₀	25% metakaolin, 25% activator solution obtained from the solid SR18–3h and 50% IOT as filler.				

Figure S1. Geopolymers produced and demolded after 72 hours.

Mineral Phase	Content / wt%	
SiO ₂	52.84	
Fe ₂ O ₃	25.74	
Al_2O_3	15.56	
MgO	2.89	
TiO ₂	0.56	
K ₂ O	0.55	
CaO	0.47	
MnO	0.15	
SO_3	0.15	
Cr_2O_3	0.08	
ZrO_2	0.01	

3. Additional information for topic 3.1: Synthesis of Potassium Silicate

Table S2. Chemical composition of the IOT by XRF analysis

Figure S2. Mössbauer spectrum of ⁵⁷Fe obtained at room temperature for the IOT.

Sample	Site	δ (± 0.05) / mm s ⁻¹	$\Delta \varepsilon$ (± 0.05) / mm s ⁻¹	$B_{\rm HF}$ (± 0.5) / T	RA (±1) / %
IOT	α-Fe ₂ O ₃	0.36	- 0.18	51.6	67
	α-FeOOH	0.37	- 0.27	37.7	21
	Fe ³⁺	0.34	0.68	-	12

Table S3. Hyperfine parameters obtained by Mössbauer spectroscopy for the IOT sample.

 δ = isomeric shift for α -Fe; $\Delta \epsilon$ = quadrupole splitting; B_{HF} = hyperfine field; RA = relative spectral area.

Figure S3. EDS mapping for Si of the IOT and of the solid fractions HR15–4h(S) and HR15–24h(S).

Figure S4. EDS mapping for Si of the IOT and residual insoluble solid fractions from SR12–3h, SR15–3h and SR18–3h.

4. Additional information for topic 3.2: Geopolymers Synthesis

Figure S5. SEM images of $G_{SAS},\,G_{SR18}$ and $G_{SAS}F_{50}$ geopolymers.