Electronic Supplementary Information

Mechanistic Insights into Benzyne Formation via 1,2-diiodobenzene Photolysis

Cristian Guerra,^{*acd} Leandro Ayarde-Henríquez,^{*b} Yeray A. Rodrigez-Nuñez,^a Eduardo Chamorro^e and Adolfo E. Ensuncho^d

^aUniversidad Andrés Bello. Departamento de Ciencias Químicas. Facultad de Ciencias Exactas. Avenida República 275, 8370146, Santiago de Chile, Chile.

^bTrinity College Dublin, The University of Dublin. School of Physics, College Green Dublin 2, Ireland.

^eUniversidad Autónoma de Chile. Facultad de Ingeniería. Avenida Pedro de Valdivia 425, 7500912, Santiago de Chile, Chile.

^dUniversidad de Córdoba. Grupo de Química Computacional. Facultad de Ciencias Básicas. Carrera 6 No. 77-305, Montería-Córdoba, Colombia.

^eUniversidad Andrés Bello. Centro de Química Teórica y Computacional (CQT&C). Facultad de Ciencias Exactas. Santiago de Chile, Chile.

This file includes:

Table S5. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-methyl benzene photolysis	.55
Figure S4. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4- formylbenzene photolysis	.56
Table S6. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-formylbenzene photolysis	.56
Figure S5. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4- cyanobenzene photolysis	.57
Table S7. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-cyanobenzene photolysis	.57
Figure S6. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4- nitrobenzene photolysis	.58
Table S8. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-nitrobenzene photolysis	.58
Figure S7. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4- methoxybenzene photolysis	.59
Table S9. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-methoxybenzene photolysis.	.59
Figure S8. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4- hydoxybenzene photolysis	.60
Table S10. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-hydoxybenzene photolysis	.60
References	.60

Overview of Bonding evolution theory (BET)

Silvi and co-workers introduced the Bonding evolution theory (BET)⁵⁵ as an alternative framework for approaching a very elusive concept: the chemical bond concept. Within this methodology, the modeling of a chemical reaction takes the form of a gradient dynamical system, wherein the electron localization function (ELF)⁵⁶ plays the role of a time-independent potential function. ELF serves as a quantum tool for visualizing the Pauli exclusion principle. The nullity condition of a potential, such as the ELF, defined over the 3D real space, yields four types of equilibria: attractors, saddles of index one and two, and repellors, each surrounded by its associated basin. The collection of these singular solutions is often referred to as the topographic map, molecular graph (MG), or phase-space portrait of the function or, more precisely, of its gradient.⁵⁷⁻⁵⁹

It is pertinent to mention that ELF maxima align closely with predictions stemming from the valence-shell electron pair repulsion theory (VSEPR),⁶⁰ establishing a robust connection between Lewis bonding concepts encompassing valence, bonds, core, and lone pairs.⁶¹⁻⁶⁸ The topographical analysis of ELF remains invariant

concerning the computational level;^{69,70} moreover, this function can also be derived from X-ray diffraction data.⁷¹⁻⁷²

Within the BET framework, the spatial arrangement of chemical bonding is conceptually elucidated through the interplay of electron localization pairs and electron density distributions, effectively delineated by basin populations. Particularly key molecular bonding events, including bond formation, cleavage, and the dynamic redistribution of electrons during chemical transformations, find adept representation through a succession of molecular configurations guided by the ELF (ELF-MG). This sequence is punctuated by sharp transitions in the spatial extent of electron pair localization, marking substantial shifts in the prevailing bonding interactions underlying the molecular system.

Optimized Cartesian coordinates for reactants (Min1), transition structures (Min2 and Min3), products (P), and minimum energy conical intersection (MECI) points of functionalized 1,2-di-iodobenzenes at WB97X using the def2-TZVP basis set and including the CPCM solvation model (solvent=benzene).

Min1(S₀)

Min1(S₀)

1,2-di-bromo benzene

1,2-di-chloro benzene

С	-5.224888	1.758818	0.043193
С	-3.837096	1.759340	0.028774
С	-3.146194	2.965973	-0.013993
С	-3.848495	4.162630	-0.043792
С	-5.232483	4.157625	-0.030665
С	-5.921397	2.954365	0.013171
Н	-5.748619	0.812131	0.077751
Н	-3.296332	5.093039	-0.077167
Н	-5.771654	5.096457	-0.054454
Н	-7.004260	2.942980	0.024059
Cl	-1.421792	3.008026	-0.030907
Cl	-3.000204	0.251350	0.063861
С	-5.241470	1.769478	0.042718
C C	-5.241470 -3.852395	1.769478 1.767999	0.042718 0.028950
C C C	-5.241470 -3.852395 -3.161811	1.769478 1.767999 2.973953	0.042718 0.028950 -0.014349
C C C C	-5.241470 -3.852395 -3.161811 -3.865875	1.769478 1.767999 2.973953 4.170827	0.042718 0.028950 -0.014349 -0.043628
C C C C C C C	-5.241470 -3.852395 -3.161811 -3.865875 -5.249530	1.769478 1.767999 2.973953 4.170827 4.167226	0.042718 0.028950 -0.014349 -0.043628 -0.030357
C C C C C C C C C C C	-5.241470 -3.852395 -3.161811 -3.865875 -5.249530 -5.938495	1.769478 1.767999 2.973953 4.170827 4.167226 2.964463	0.042718 0.028950 -0.014349 -0.043628 -0.030357 0.012653
C C C C C C H	-5.241470 -3.852395 -3.161811 -3.865875 -5.249530 -5.938495 -5.770714	1.769478 1.767999 2.973953 4.170827 4.167226 2.964463 0.825886	0.042718 0.028950 -0.014349 -0.043628 -0.030357 0.012653 0.076797
C C C C C C H H	-5.241470 -3.852395 -3.161811 -3.865875 -5.249530 -5.938495 -5.770714 -3.318502	1.769478 1.767999 2.973953 4.170827 4.167226 2.964463 0.825886 5.103926	0.042718 0.028950 -0.014349 -0.043628 -0.030357 0.012653 0.076797 -0.076852
C C C C C C H H H	-5.241470 -3.852395 -3.161811 -3.865875 -5.249530 -5.938495 -5.770714 -3.318502 -5.787064	1.769478 1.767999 2.973953 4.170827 4.167226 2.964463 0.825886 5.103926 5.106965	0.042718 0.028950 -0.014349 -0.043628 -0.030357 0.012653 0.076797 -0.076852 -0.053606
C C C C C C C H H H H	-5.241470 -3.852395 -3.161811 -3.865875 -5.249530 -5.938495 -5.770714 -3.318502 -5.787064 -7.021340	1.769478 1.767999 2.973953 4.170827 4.167226 2.964463 0.825886 5.103926 5.106965 2.952082	0.042718 0.028950 -0.014349 -0.043628 -0.030357 0.012653 0.076797 -0.076852 -0.053606 0.023090
C C C C C C H H H H Br	-5.241470 -3.852395 -3.161811 -3.865875 -5.249530 -5.938495 -5.770714 -3.318502 -5.787064 -7.021340 -1.279327	1.769478 1.767999 2.973953 4.170827 4.167226 2.964463 0.825886 5.103926 5.106965 2.952082 3.054435	0.042718 0.028950 -0.014349 -0.043628 -0.030357 0.012653 0.076797 -0.076852 -0.053606 0.023090 -0.036136

Min1(S₀) 1,2-di-iodo benzene

	С	-5.261133	1.784151	0.042735
	С	-3.869117	1.776444	0.028605
	С	-3.177261	2.984269	-0.014476
	С	-3.887492	4.181089	-0.044211
	С	-5.271053	4.179863	-0.030904
	С	-5.959788	2.977926	0.012969
	Н	-5.799030	0.845343	0.076979
	Н	-3.348660	5.119374	-0.078063
	Н	-5.807218	5.120478	-0.054651
	Н	-7.042668	2.963941	0.024108
	Ι	-1.095627	3.118181	-0.037297
	Ι	-2.934366	-0.088324	0.074037
$\operatorname{Min2}(\mathbf{S}_1)$				
1,2-di-chloro benzene				
	С	-5.239695	1.779809	0.041958
	С	-3.855829	1.872148	0.023968
	С	-3.264501	3.087955	-0.019847
	С	-3.939977	4.274944	-0.048116
	С	-5.334546	4.196654	-0.030034
	С	-5.969786	2.961772	0.013870
	Н	-5.730481	0.814021	0.076832
	Н	-3.433148	5.232092	-0.082799
	Н	-5.922843	5.106887	-0.050117
	Н	-7.051697	2.915179	0.026737
	Cl	-0.852012	2.293355	-0.009818
	Cl	-2.858898	0.427920	0.057198
$Min2(S_1)$				
1,2-di-bromo benzene				
	С	-5.362583	1.795125	0.051727
	C	-3.989426	1.801805	0.043311
	Ċ	-3.271563	2.944615	-0.002619
	С	-3.887726	4.185293	-0.043901
	С	-5.276553	4.209667	-0.036686
	Ċ	-6.009626	3.029363	0.011344
	Н	-5.931501	0.873012	0.088221
	Н	-3.309899	5.101879	-0.081102
	Н	-5.790855	5.162297	-0.069820
	Н	-7.093118	3.066352	0.016895
	Br	-1.348788	2.804159	-0.011205
	Br	-2.181775	-0.010833	0.033667
Min2(S ₁)				
1,2-di-iodo benzene				
	С	-5.351396	1.801772	0.047894
	С	-3.971817	1.816498	0.035775
	С	-3.286217	2.971600	-0.007922
	С	-3.907340	4.209170	-0.044052
	С	-5.296148	4.218107	-0.034224
	С	-6.013743	3.026103	0.012078
	Н	-5.913248	0.873946	0.083545
	Н	-3.340227	5.132938	-0.079641

Н	-5.821685	5.164996	-0.063600
Н	-7.097776	3.050377	0.019640
Ι	-1.128862	2.829664	-0.022709
Ι	-2.324956	-0.132435	0.053047

Min3(T₁) 1,2-di-chloro benzene

С	-5.376777	1.767792	0.044014
С	-3.986340	1.748808	0.026041
С	-3.334300	2.949891	-0.017671
С	-3.941972	4.175265	-0.047517
С	-5.336459	4.184932	-0.029954
С	-6.039365	2.987807	0.015737
Η	-5.926756	0.834959	0.079855
Η	-3.372047	5.096322	-0.082385
Η	-5.868715	5.128546	-0.051895
Η	-7.122390	2.999760	0.029710
Cl	-0.030431	2.838385	-0.024630
Cl	-3.117861	0.250268	0.058526

Min3(T₁) 1,2-di-bromo benzene

-5.238727	1.836478	0.084814
-3.875662	1.965072	0.091818
-3.198602	3.147966	0.028283
-3.941550	4.321201	-0.049530
-5.328128	4.242505	-0.059609
-5.977710	3.016061	0.006553
-5.723032	0.868342	0.136574
-3.438639	5.279459	-0.101473
-5.908020	5.155329	-0.120020
-7.060546	2.973475	-0.003027
-1.308995	3.191910	0.046793
-2.453804	-1.035061	-0.061344
	-5.238727 -3.875662 -3.198602 -3.941550 -5.328128 -5.977710 -5.723032 -3.438639 -5.908020 -7.060546 -1.308995 -2.453804	-5.2387271.836478-3.8756621.965072-3.1986023.147966-3.9415504.321201-5.3281284.242505-5.9777103.016061-5.7230320.868342-3.4386395.279459-5.9080205.155329-7.0605462.973475-1.3089953.191910-2.453804-1.035061

Min3(T₁) 1,2-di-iodo benzene

С	-5.251316	1.866668	0.252025
С	-3.888553	2.003387	0.294427
С	-3.206283	3.171627	0.127999
С	-3.949491	4.327695	-0.102014
С	-5.334515	4.243641	-0.152728
С	-5.986032	3.028534	0.022312
Η	-5.737593	0.907810	0.388536
Н	-3.450615	5.279837	-0.240110
Η	-5.910914	5.142894	-0.333192
Η	-7.067891	2.980904	-0.020980
Ι	-1.122430	3.218743	0.215964
Ι	-2.547779	-1.209003	-0.452408

$\mathbf{P}(\mathbf{S}_0)$

Benzyne + Cl	2
--------------	---

С	-5.984938	1.886287	0.025068
С	-4.620481	1.672781	0.029960
С	-3.737862	2.536488	0.009874
С	-3.887683	3.906206	-0.017527

	С	-5.249738	4.232417	-0.022850
	С	-6.259773	3.258948	-0.002620
	Н	-6.764004	1.136070	0.040666
	Η	-3.104546	4.652188	-0.033582
	Η	-5.533940	5.278876	-0.043515
	Η	-7.295108	3.582026	-0.008765
	Cl	-0.342352	2.374263	-0.131198
	Cl	-0.672975	0.446249	0.154388
$P(S_{a})$				
$Benzyne + Br_2$				
	С	-5.898729	1.889644	0.081655
	С	-4.523907	1.760734	0.120821
	С	-3.697757	2.678149	0.080229
	С	-3.929630	4.033008	-0.011859
	С	-5.308871	4.272775	-0.058371
	С	-6.257181	3.239895	-0.012614
	Н	-6.629475	1.092769	0.116025
	Η	-3.194184	4.825400	-0.046239
	Η	-5.656888	5.297330	-0.132136
	Η	-7.309953	3.497828	-0.051660
	Br	-0.194930	2.276186	-0.043194
	Br	-0.851897	0.099084	-0.042756
$\mathbf{P}(\mathbf{S}_{\mathbf{a}})$				
$\frac{1}{100}$				
	С	-5.613892	1.898683	0.046887
	С	-4.239630	2.020461	0.015074
	С	-3.581285	3.064882	-0.035604
	С	-4.059777	4.358274	-0.068400
	С	-5.459773	4.351200	-0.039787
	С	-6.208474	3.166023	0.016077
	Н	-6.190637	0.984829	0.091607
	Η	-3.480038	5.270226	-0.112748
	Η	-5.985944	5.299277	-0.062444
	Η	-7.290807	3.233341	0.036902
	Ι	-0.006122	1.800532	0.161239
	Ι	-1.337021	-0.484927	-0.048902
Min1(S ₀)				
1,2,4-di-iodo methyl benzene				
	С	-5.283564	1.877876	0.053764
	Č	-3.890807	1.869499	0.035541
	č	-3.195349	3.071542	-0.018462
	Č	-3.913133	4.264702	-0.053828
	č	-5.293968	4.258985	-0.036680
	Č	-6 003382	3 062284	0.016067
	й	-5 816653	0 935555	0.098315
	Н	-3 379918	5 206112	-0.094583
	Н	-5.828445	5.202263	-0.064007
	I	-1.114759	3.208420	-0.047722
	-		5.200 120	J.J . , ,

Benzyne	+	I_2
---------	---	-------

I -2.961023 0.002091 0.093170 C -7.505943 3.056041 0.018940 H -7.896645 3.728010 0.784841 Н -7.892614 3.396191 -0.944129

Min2(S₁) 1,2,4-di-iodo methyl benzene

С	-5.266333	1.822465	0.083797
С	-3.887066	1.820358	0.073126
С	-3.184211	2.962058	-0.010863
С	-3.802415	4.199746	-0.094166
С	-5.188602	4.219668	-0.086308
С	-5.938541	3.043377	0.005566
Н	-5.834988	0.898810	0.148712
Н	-3.232000	5.119631	-0.166813
Н	-5.702178	5.172557	-0.156958
Ι	-1.033374	2.804700	-0.024181
Ι	-2.251557	-0.148587	0.125280
С	-7.441593	3.099073	0.037099
Н	-7.876131	2.118257	-0.156914
Η	-7.793769	3.433675	1.015654
Η	-7.825366	3.799375	-0.706355

Min3(T₁) 1,2,4-di-iodo methyl benzene

С	-5.381592	1.853583	0.175183
С	-4.013434	1.843275	0.186822
С	-3.217039	2.936851	0.045533
С	-3.838028	4.170507	-0.124436
С	-5.223448	4.229278	-0.138634
С	-6.014414	3.089874	0.011113
Η	-5.962289	0.944197	0.286036
Η	-3.249297	5.072318	-0.247815
Η	-5.703548	5.191776	-0.276042
Ι	-1.136000	2.768857	0.076823
Ι	-1.298207	-0.573476	-0.019414
С	-7.514078	3.188989	0.020313
Η	-7.972141	2.269782	-0.345054
Η	-7.878965	3.360954	1.035814
Η	-7.855648	4.018399	-0.599567

 $P(S_0)$ 4-methyl benzyne + I₂

С	-6.512742	1.841054	0.063050
С	-5.134558	1.753647	0.042637
С	-4.331715	2.689218	-0.012447
С	-4.622097	4.037775	-0.065727
С	-6.004835	4.231689	-0.048900
С	-6.938983	3.176397	0.013538
Η	-7.216226	1.019268	0.109586
Н	-3.915934	4.856285	-0.114197
Η	-6.382473	5.248898	-0.086993
Ι	-0.655268	2.901411	-0.198556
Ι	-1.028279	0.313654	0.253377
С	-8.412731	3.491600	0.029268
Η	-8.676147	4.080836	0.909814
Η	-8.697977	4.070220	-0.851204
Н	-9.009137	2.579448	0.042953

Min1(S₀) 1,2,4-di-iodo formyl benzene

С	-5.296907	1.862875	0.033297
С	-3.906325	1.839557	0.016915
С	-3.208585	3.044541	-0.020923
С	-3.908173	4.252493	-0.044717
С	-5.286320	4.265548	-0.029542
С	-5.985882	3.064524	0.010834
Η	-5.850315	0.930833	0.063643
Н	-3.357766	5.183823	-0.074629
Η	-5.834106	5.199675	-0.047444
Ι	-1.129532	3.161524	-0.043404
Ι	-2.986512	-0.030822	0.051870
С	-7.467883	3.046296	0.032907
0	-8.157312	4.034432	0.011527
Η	-7.920181	2.037002	0.071165

Min2(S₁) 1,2,4-di-iodo formyl benzene

С	-5.429665	1.882337	0.036489
С	-4.051599	1.812277	0.028921
С	-3.310225	2.935854	-0.003726
С	-3.865846	4.209292	-0.031905
С	-5.245627	4.298103	-0.028333
С	-6.028034	3.141887	0.006518
Н	-6.050027	0.989882	0.063267
Η	-3.247985	5.099885	-0.056449
Η	-5.736638	5.263383	-0.052263
Ι	-1.170972	2.697811	-0.015027
Ι	-2.493000	-0.216186	0.048470
С	-7.507060	3.238196	0.010726
0	-8.124248	4.273286	-0.034743
Η	-8.034988	2.266336	0.059620

Min3(T₁) 1,2,4-di-iodo formyl benzene

С	-5.533815	1.910543	0.034228
С	-4.166542	1.846737	0.027162
С	-3.338068	2.926058	-0.004693
С	-3.904392	4.201206	-0.035000
С	-5.282418	4.317945	-0.031357
С	-6.097653	3.187256	0.004101
Н	-6.157887	1.023119	0.060877
Η	-3.275007	5.082714	-0.060429
Η	-5.748384	5.295335	-0.055922
Ι	-1.265612	2.678770	-0.008335
Ι	-1.662573	-0.660134	0.058685
С	-7.575504	3.327034	0.011835
0	-8.154066	4.383471	-0.015759
Η	-8.133994	2.372287	0.046170

P(S₀) 4-formyl benzyne + I₂

С	-6.551121	1.857663	0.076787
С	-5.176409	1.749758	0.069684

С	-4.379202	2.690993	0.020737
С	-4.635825	4.045582	-0.039530
С	-6.013788	4.260405	-0.039317
С	-6.944823	3.204873	0.016631
Η	-7.271931	1.049776	0.120002
Н	-3.913018	4.848576	-0.081028
Н	-6.397829	5.273143	-0.083394
Ι	-0.669731	2.920321	-0.008312
Ι	-1.104438	0.302495	-0.015129
С	-8.398121	3.501543	0.011598
0	-8.874286	4.608400	-0.036502
Н	-9.050477	2.608271	0.055873

Min1(S₀) 1,2,4-di-iodo cyano benzene

С	-5.320104	2.433516	0.993859
С	-3.958480	2.176395	0.898730
С	-3.233081	2.705442	-0.168704
С	-3.881534	3.480300	-1.127219
С	-5.235314	3.733100	-1.036565
С	-5.955647	3.207211	0.031136
Н	-5.893241	2.031663	1.819212
Н	-3.316860	3.889239	-1.954840
Η	-5.730916	4.333873	-1.788101
Ι	-1.190197	2.401544	-0.427914
Ι	-3.115243	0.999154	2.395992
С	-7.366835	3.459272	0.146224
Ν	-8.493249	3.661391	0.236790

Min2(S₁) 1,2,4-di-iodo cyano benzene

С	-5.416994	1.856106	0.050009
С	-4.041077	1.808481	0.034042
С	-3.308441	2.939608	-0.014230
С	-3.876892	4.203192	-0.050113
С	-5.259449	4.281945	-0.037162
С	-6.024977	3.114781	0.013078
Η	-6.028670	0.960947	0.088793
Н	-3.272252	5.102142	-0.087904
Н	-5.749856	5.246512	-0.066603
Ι	-1.169579	2.717497	-0.040032
Ι	-2.474644	-0.203884	0.062993
С	-7.460885	3.208619	0.026439
Ν	-8.607215	3.276045	0.039327

Min3(T₁) 1,2,4-di-iodo cyano benzene

С	-5.516758	1.893439	0.047290
С	-4.151415	1.852389	0.030270
С	-3.331625	2.939098	-0.016542
С	-3.912495	4.203926	-0.050971
С	-5.293582	4.310652	-0.037235
С	-6.092601	3.168005	0.011755
Η	-6.130082	1.001596	0.085254
Н	-3.296577	5.094311	-0.087842

Η	-5.758256	5.287693	-0.065227
Ι	-1.258494	2.704329	-0.037228
Ι	-1.754413	-0.632729	0.072424
С	-7.525382	3.296498	0.026737
Ν	-8.669252	3.392782	0.039950

P(S₀)

4-cyano benzyne + I_2

С	-6.376195	1.904368	-0.286643
С	-5.001706	1.871202	-0.197362
С	-4.288168	2.850376	0.045756
С	-4.620437	4.162150	0.283583
С	-6.008423	4.301679	0.213883
С	-6.855113	3.209187	-0.061677
Η	-7.043241	1.078777	-0.496453
Η	-3.956374	4.988433	0.494673
Η	-6.452884	5.276747	0.375685
Ι	-0.756084	2.547473	0.168696
Ι	-1.275125	-0.031813	-0.165251
С	-8.275001	3.441902	-0.115156
Ν	-9.407849	3.624719	-0.158034

Min1(S₀) 1,2,4-di-iodo nitro benzene

С	-5.282368	1.841827	0.033359
С	-3.893523	1.838550	0.017148
С	-3.204574	3.051418	-0.020638
С	-3.913070	4.250703	-0.041669
С	-5.293826	4.259170	-0.024704
С	-5.953199	3.046383	0.012434
Η	-5.843669	0.918816	0.062038
Η	-3.375137	5.188909	-0.071649
Η	-5.850179	5.185315	-0.040126
Ι	-1.127952	3.183620	-0.048083
Ι	-2.958266	-0.022136	0.051621
Ν	-7.426185	3.032140	0.030007
0	-7.996639	4.099675	0.026459
0	-7.980612	1.956510	0.046501

Min2(S₁)

1,2,4-di-iodo nitro benzene

С	-5.416598	1.861525	0.049284
С	-4.039651	1.810814	0.035251
С	-3.303280	2.941071	-0.012808
С	-3.867692	4.207244	-0.051623
С	-5.249954	4.292237	-0.041611
С	-5.994418	3.122654	0.009880
Η	-6.041667	0.977842	0.087602
Н	-3.260193	5.104165	-0.089102
Н	-5.750315	5.249517	-0.072950
Ι	-1.169495	2.712624	-0.032330
Ι	-2.479740	-0.210129	0.070184
Ν	-7.466187	3.227338	0.023452
0	-7.956034	4.333257	-0.036196
0	-8.104039	2.200754	0.093582

 $Min3(T_1)$

1,2,4-di-iodo nitro benzene

С	-5.506548	1.892123	0.048496
С	-4.140526	1.852762	0.032235
С	-3.321293	2.940632	-0.017907
С	-3.900943	4.206137	-0.056414
С	-5.282350	4.314859	-0.042890
С	-6.055806	3.166606	0.009136
Η	-6.132077	1.010429	0.088482
Н	-3.284937	5.096191	-0.096244
Н	-5.760979	5.283200	-0.073229
Ι	-1.249397	2.703684	-0.038009
Ι	-1.769723	-0.633547	0.098827
Ν	-7.525047	3.299252	0.023111
0	-7.989843	4.416478	0.008004
0	-8.179793	2.282107	0.049019

P(S₀) 4-nitro benzyne + I₂

С	-6.394127	1.931388	0.061269
С	-5.018228	1.985929	0.051576
С	-4.339099	3.016491	0.005952
С	-4.738910	4.333160	-0.042524
С	-6.132759	4.396786	-0.037790
С	-6.910158	3.230689	0.013078
Н	-7.031469	1.060331	0.099788
Η	-4.112906	5.213228	-0.080473
Η	-6.634986	5.353803	-0.074267
Ι	-0.798824	2.339904	-0.040039
Ι	-1.719482	-0.146424	0.060962
Ν	-8.378152	3.379739	0.017288
0	-8.839148	4.499141	-0.006997
0	-9.044553	2.368938	0.045176

Min1(S₀) 1,2,4-di-iodo methoxy benzene

С	-5.269772	1.821754	0.022632
С	-3.875850	1.853838	-0.023137
С	-3.199564	3.064403	-0.046524
С	-3.942038	4.246881	-0.021650
С	-5.316399	4.225650	0.023771
С	-5.991943	3.006371	0.044406
Н	-5.773318	0.866161	0.041025
Η	-3.427528	5.199238	-0.039294
Н	-5.888200	5.144799	0.042988
Ι	-1.124063	3.241850	-0.117229
Ι	-2.913461	0.001773	-0.053011
0	-7.339698	3.073308	0.085262
С	-8.069453	1.859090	0.092056
Η	-9.119704	2.138606	0.114106
Н	-7.866296	1.273384	-0.808660
Н	-7.832311	1.262392	0.977259

Min2(S₁)

1,2,4-di-iodo methoxy benzene

С	-5.344124	1.831322	0.064244
С	-3.956591	1.883375	0.041465
С	-3.258242	3.021402	-0.015414
С	-3.906209	4.244625	-0.055021
С	-5.290017	4.253443	-0.034478
С	-6.010155	3.052716	0.024272
Н	-5.872410	0.888094	0.111101
Н	-3.359552	5.181002	-0.102210
Η	-5.846491	5.183172	-0.064402
Ι	-0.780165	2.477994	-0.041198
Ι	-2.821259	0.035358	0.091742
0	-7.359651	3.174279	0.038286
С	-8.126587	1.985544	0.064270
Н	-9.168892	2.294612	0.062677
Н	-7.927494	1.370157	-0.818011
Н	-7.921675	1.402503	0.966893

Min3(T₁) 1,2,4-di-iodo methoxy benzene

С	-5.361249	1.882068	0.081763
С	-3.967237	1.933304	0.045970
С	-3.345673	3.135813	-0.020235
С	-4.005204	4.341716	-0.058055
С	-5.388834	4.305381	-0.028489
С	-6.064845	3.082080	0.037646
Η	-5.868489	0.928498	0.137204
Н	-3.474901	5.284779	-0.111156
Η	-5.973666	5.216726	-0.058482
Ι	0.004839	1.918776	-0.069251
Ι	-2.849288	0.168378	0.103859
0	-7.415729	3.162220	0.053956
С	-8.155033	1.955024	0.055287
Η	-9.203503	2.242053	0.041284
Η	-7.929300	1.355866	-0.831658
Η	-7.951399	1.366915	0.954572

P(S₀) 4-methoxy benzyne + I₂

С	-6.255597	1.864709	0.072297
С	-4.882097	2.012907	0.044074
С	-4.232926	3.058969	-0.003815
С	-4.734758	4.349622	-0.047159
С	-6.121985	4.330547	-0.026354
С	-6.868690	3.127226	0.031463
Н	-6.807429	0.937585	0.116374
Η	-4.166166	5.268767	-0.090246
Η	-6.680421	5.258784	-0.054273
Ι	-0.620068	2.398243	-0.157103
Ι	-1.484231	-0.098590	0.078441
Ο	-8.214038	3.299060	0.043895
С	-9.027695	2.141636	0.084939
Н	-10.056153	2.493705	0.082856
Н	-8.856235	1.509534	-0.791111
Н	-8.842812	1.562093	0.993921

Min1(S₀) 1,2,4-di-iodo hydroxy benzene

С	-5.253255	1.819077	0.050923
С	-3.865711	1.834225	0.041158
С	-3.178040	3.045543	-0.011793
С	-3.908362	4.227988	-0.056090
С	-5.290301	4.219670	-0.047434
С	-5.966371	3.008353	0.006964
Н	-5.799225	0.885566	0.092225
Η	-3.386720	5.175708	-0.097997
Η	-5.840669	5.153337	-0.082388
Ι	-1.099314	3.203160	-0.027576
Ι	-2.913929	-0.020969	0.108077
0	-7.318459	2.922706	0.018932
Η	-7.706344	3.802136	-0.017301

Min2(S₁) 1,2,4-di-iodo hydroxy benzene

С	-5.402043	1.860530	0.051387
С	-4.027633	1.824096	0.032020
С	-3.283481	2.948178	-0.018416
С	-3.865674	4.203956	-0.054580
С	-5.249992	4.277843	-0.038215
С	-6.016345	3.112845	0.015328
Η	-6.017895	0.967889	0.091935
Η	-3.268863	5.109059	-0.095089
Η	-5.740740	5.244764	-0.067738
Ι	-1.148454	2.726605	-0.045807
Ι	-2.449577	-0.199384	0.065851
0	-7.373475	3.144972	0.034047
Η	-7.682611	4.055248	0.006948

Min3(T₁) 1,2,4-di-iodo hydroxy benzene

С	-5.520307	1.905082	0.049206
С	-4.156253	1.860096	0.029449
С	-3.319077	2.933714	-0.019638
С	-3.901402	4.196522	-0.054704
С	-5.282476	4.312670	-0.039077
С	-6.092757	3.178745	0.013357
Η	-6.147120	1.022411	0.089284
Η	-3.284979	5.087340	-0.093955
Η	-5.737739	5.296415	-0.068385
Ι	-1.246405	2.688454	-0.041777
Ι	-1.666894	-0.629877	0.074759
0	-7.444045	3.252966	0.031658
Η	-7.727329	4.172061	0.007490

P(S₀) 4-hydroxy benzyne + I₂

С	-6.476646	1.879410	0.058598
С	-5.099962	1.838592	0.050173
С	-4.322121	2.796622	0.008478
С	-4.643072	4.137043	-0.038784
С	-6.027910	4.304085	-0.034442

	С	-6.918911	3.209944	0.012825
	Н	-7.175656	1.054604	0.093976
	Н	-3.956122	4,972360	-0.074704
	Н	-6.441810	5.307008	-0.069361
	I	-0.711844	2.784489	-0.054729
	Ī	-1 191953	0 178873	0.055573
	Ô	-8 266853	3 400515	0.015954
	H	-8.470441	4.339255	-0.012657
MECI-1 (S_2/S_1)				
1,2-di-iodo benzene				
	С	-5.258854	1.829036	0.039833
	С	-3.886785	1.897517	0.024933
	С	-3.201488	3.053304	-0.018941
	С	-3.878278	4.252593	-0.049135
	С	-5.262349	4.219279	-0.030856
	С	-5.958132	3.014800	0.011691
	Н	-5.758638	0.868233	0.069118
	Н	-3.345081	5.189065	-0.086107
	Н	-5.798590	5.153856	-0.052298
	Н	-7.036478	2.999916	0.024090
	Ι	-1.040619	3.082465	-0.037363
	Ι	-2.817416	-0.232536	0.078609
$MFCI_1(S_2/S_2)$				
1,2,4-di-iodo methyl benzene				
	С	-5.316885	1.869897	0.004612
	С	-3.927001	1.882735	-0.006913
	С	-3.272084	3.069702	-0.011843
	Ċ	-3.930762	4.290090	-0.010801
	C	-5.314818	4.288669	-0.000640
	С	-6.018100	3.075254	0.010323
	Н	-5.866933	0.935515	0.013397
	Н	-3.382406	5.232569	-0.013910
	Н	-5.837744	5.240693	0.003962
	Ι	-0.856604	3.118294	-0.028085
	Ι	-2.871492	0.010898	-0.008363
	С	-7.524290	3.052757	0.022058
	Н	-7.926412	3,794351	0.714406
	Н	-7.929185	3.277506	-0.967941
	Н	-7.905599	2.072908	0.314205
MECI-1 (S ₂ /S ₁)				
1,2,4-di-iodo formyl benzene				
	С	-5.356833	1.825084	0.036530
	Ċ	-3.815777	1.823657	0.017688
	Č	-3.130760	3.003932	-0.021140
	č	-3.913679	4.334176	-0.046010
	Č	-5.267811	4.331836	-0.029332

С	-3.913679	4.334176	-0.046010
С	-5.267811	4.331836	-0.029332
С	-6.035584	2.995851	0.014610
Н	-5.887814	0.897354	0.066999
Η	-3.380005	5.260232	-0.076504
Η	-5.805335	5.256928	-0.046614
Ι	-1.041019	3.005720	-0.047013
Ι	-2.762580	0.011081	0.051501

С	-7.576073	2.994161	0.033594
0	-8.206821	4.082453	0.013188
Н	-8.108385	2.066999	0.064083

MECI-1 (S₂/S₁) 1,2,4-di-iodo cyano benzene

С	-5.324103	2.462978	0.941796
С	-3.969830	2.227896	0.821340
С	-3.244056	2.742642	-0.224535
С	-3.872767	3.519743	-1.191968
С	-5.231583	3.769027	-1.090068
С	-5.962381	3.242550	-0.023800
Н	-5.898484	2.054742	1.768281
Η	-3.309135	3.929339	-2.021297
Η	-5.721723	4.373706	-1.842423
Ι	-1.180672	2.394634	-0.425386
Ι	-2.910272	0.782889	2.664582
С	-7.374202	3.491061	0.098552
Ν	-8.502104	3.668756	0.228294

MECI-1 (S₂/S₁) 1,2,4-di-iodo nitro benzene

С	-5.293150	1.865386	0.081244
С	-3.914913	1.906410	0.052927
С	-3.236392	3.096149	-0.048634
С	-3.934003	4.296990	-0.132816
С	-5.318258	4.284150	-0.083305
С	-5.975619	3.069612	0.022596
Η	-5.843381	0.933925	0.145600
Η	-3.405039	5.235491	-0.242232
Н	-5.879962	5.206604	-0.127613
Ι	-1.136448	3.165267	-0.075227
Ι	-2.728924	-0.387546	0.048861
Ν	-7.449816	3.052895	0.049172
0	-8.029682	4.115323	0.021648
0	-7.999469	1.974628	0.092903

MECI-1 (S₂/S₁) 1,2,4- di-iodo methoxy benzene

С	-5.347520	1.854440	-0.228024
С	-3.973981	1.881156	-0.125770
С	-3.309226	3.053115	0.016798
С	-3.976540	4.277876	0.052936
С	-5.348206	4.291152	-0.059663
С	-6.049451	3.063594	-0.188552
Η	-5.899719	0.931967	-0.328002
Н	-3.426180	5.212285	0.179393
Н	-5.859107	5.245536	-0.015480
Ι	-0.992919	3.023899	0.198688
Ι	-2.855603	-0.031294	-0.186825
0	-7.401307	3.058628	-0.232867
С	-8.002463	1.825006	0.195208
Н	-9.076013	1.955620	0.322512
Η	-7.825458	1.026970	-0.527985
Η	-7.555089	1.549762	1.152034

MECI-1 (S₂/S₁) 1,2,4-di-iodo hydroxy benzene

С	-5.317039	1.766893	0.097556
С	-3.933806	1.812737	0.047797
С	-3.276659	3.009971	-0.017973
С	-3.958241	4.220300	-0.034508
С	-5.334515	4.209745	0.012469
С	-6.017299	2.982071	0.069126
Н	-5.872464	0.834015	0.136155
Η	-3.421571	5.169165	-0.081701
Н	-5.865818	5.154353	0.008530
Ι	-0.879023	3.054488	-0.106246
Ι	-2.779749	-0.005984	0.060162
0	-7.370806	2.912029	0.111577
Н	-7.784763	3.664761	-0.325953

MECI-2(S₀/S₁) 1,2-di-chloro benzene

С	-5.502419	1.765481	0.043999
С	-4.133222	1.718933	0.031556
С	-3.338687	2.771703	-0.006144
С	-3.857297	4.043302	-0.037042
С	-5.237573	4.175587	-0.027721
С	-6.055839	3.049488	0.012912
Η	-6.132954	0.885902	0.075255
Η	-3.170189	4.888509	-0.067813
Η	-5.677972	5.164648	-0.052924
Η	-7.134131	3.163955	0.020656
Cl	-1.374041	2.822017	-0.028126
Cl	-1.839090	0.513210	0.035223

$MECI-2(S_0/S_1)$

1,2-di-bromo benzene

С	-5.222965	1.820970	0.022767
С	-3.870099	2.064801	-0.044476
С	-3.294286	3.216449	-0.104028
С	-4.014592	4.396243	-0.084065
С	-5.398974	4.244007	-0.013140
С	-5.992430	2.979106	0.037416
Η	-5.651548	0.825161	0.067758
Η	-3.563226	5.380204	-0.128739
Η	-6.029958	5.126058	-0.000321
Н	-7.071203	2.896987	0.093439
Br	-0.695815	1.774772	0.209067
Br	-2.648318	0.237979	-0.055844

$MECI-2(S_0/S_1)$

1,2-di-iodo benzene

С	-5.531826	1.815724	0.084046
С	-4.155788	1.789900	0.050328
С	-3.370220	2.819143	-0.020192
С	-3.874011	4.106385	-0.071474
С	-5.255040	4.229881	-0.044712
С	-6.074106	3.101573	0.033264
Н	-6.166779	0.941309	0.144764

-3.211412	4.968130	-0.130819
-5.700462	5.216914	-0.085737
-7.151525	3.224167	0.055039
-1.003114	2.756273	-0.076179
-1.959130	-0.006665	0.061503
	-3.211412 -5.700462 -7.151525 -1.003114 -1.959130	-3.211412 4.968130 -5.700462 5.216914 -7.151525 3.224167 -1.003114 2.756273 -1.959130 -0.006665

MECI-2(S₀/S₁) 1,2,4-di-iodo methyl benzene

С	-5.325409	1.806224	0.079676
С	-3.950925	1.874325	0.066071
С	-3.253178	2.950056	-0.009586
С	-3.809744	4.211551	-0.086698
С	-5.201033	4.222656	-0.077684
С	-5.966729	3.046312	0.005243
Н	-5.895233	0.885630	0.139780
Η	-3.229930	5.126001	-0.153271
Η	-5.718450	5.174581	-0.140737
Ι	-0.780997	2.541641	-0.026314
Ι	-2.074628	-0.021303	0.142620
С	-7.470335	3.120827	0.029111
Η	-7.912941	2.136546	-0.125291
Н	-7.823697	3.499984	0.990482
Η	-7.844898	3.790134	-0.746727

MECI-2(S₀/S₁) 1,2,4-di-iodo formyl benzene

С	-5.524174	1.850540	0.038899
С	-4.148230	1.817509	0.030593
С	-3.389269	2.866457	-0.000660
С	-3.873754	4.161825	-0.030762
С	-5.254357	4.274982	-0.028396
С	-6.072867	3.136994	0.007083
Н	-6.163643	0.974463	0.066697
Η	-3.221291	5.029768	-0.056067
Η	-5.726426	5.249939	-0.053989
Ι	-0.985467	2.610768	-0.013624
Ι	-2.145712	-0.026914	0.038734
С	-7.549224	3.281570	0.010271
0	-8.131941	4.336192	-0.035300
Η	-8.109558	2.328252	0.058085

MECI-2(S₀/S₁) 1,2,4-di-iodo cyano benzene

С	-5.517543	1.826709	0.049784
С	-4.144309	1.808971	0.032911
С	-3.391449	2.865686	-0.011488
С	-3.885781	4.153526	-0.049658
С	-5.268410	4.262066	-0.038444
С	-6.072335	3.114017	0.012319
Η	-6.152500	0.950362	0.088822
Н	-3.241869	5.027481	-0.087266
Н	-5.738454	5.237241	-0.069190
Ι	-0.992820	2.636905	-0.032520
Ι	-2.134060	-0.005815	0.051893
С	-7.504382	3.260935	0.028022

$MECI-2(S_0/S_1)$

1,2,4-di-iodo nitro benzene

С	-5.536218	1.819134	0.049826
С	-4.161220	1.776343	0.035062
С	-3.385057	2.822363	-0.010286
С	-3.874749	4.113527	-0.052568
С	-5.251059	4.253950	-0.043774
С	-6.048510	3.113882	0.009014
Η	-6.196480	0.963761	0.089340
Η	-3.208744	4.972650	-0.090923
Н	-5.712522	5.230516	-0.076981
Ι	-1.022272	2.729858	-0.028262
Ι	-2.038881	0.020947	0.064677
Ν	-7.514003	3.292577	0.024763
Ο	-7.946646	4.422884	-0.011261
0	-8.202902	2.298518	0.073987

MECI-2(S₀/S₁) 1,2,4-di-iodo methoxy benzene

С	-5.291834	1.927894	0.060158
С	-3.911057	2.043035	0.030023
С	-3.337593	3.197446	-0.025493
С	-3.970504	4.424703	-0.063935
С	-5.356619	4.353399	-0.036925
С	-6.017305	3.112250	0.023896
Н	-5.756134	0.946201	0.109492
Η	-3.465484	5.380774	-0.114221
Η	-5.959725	5.254122	-0.064264
Ι	-0.728986	1.857460	0.000971
Ι	-2.961598	-0.109415	0.082007
0	-7.370668	3.155198	0.042357
С	-8.061058	1.917154	0.067958
Н	-9.121267	2.156428	0.065489
Η	-7.820901	1.315166	-0.813472
Η	-7.818781	1.347781	0.970176

MECI-2(S₀/S₁) 1,2,4-di-iodo hydroxy benzene

С	-5.475956	1.842470	0.051394
С	-4.104944	1.874905	0.029526
С	-3.361783	2.926215	-0.016898
С	-3.878718	4.205133	-0.054094
С	-5.267073	4.276022	-0.037273
С	-6.055490	3.114516	0.015477
Η	-6.095387	0.954850	0.090667
Η	-3.265448	5.100111	-0.093440
Н	-5.758853	5.242977	-0.065516
Ι	-0.925021	2.521617	-0.046582
Ι	-2.218376	-0.043898	0.063377
0	-7.412982	3.173368	0.033609
Н	-7.706752	4.088313	0.007421

Vibrational frequencies for relevant energy stationary points concerning the 1,2-diiodobenzene derivatives photolysis.

 $Min1(S_0)$

1,2-di-chloro benzene		
0:	0.00 cm**-1	
1:	0.00 cm**-1	
2:	0.00 cm**-1	
3:	0.00 cm**-1	
4:	0.00 cm**-1	
5:	0.00 cm**-1	
6:	131.92 cm**-1	
7:	207.90 cm**-1	
8:	239.90 cm**-1	
9:	342.51 cm**-1	
10:	438.01 cm**-1	
11:	451.01 cm**-1	
12:	492.00 cm**-1	
13:	537.10 cm**-1	
14:	682.66 cm**-1	
15:	744.35 cm**-1	
16:	764.33 cm**-1	
17:	774.51 cm**-1	
18:	896.97 cm**-1	
19:	989.30 cm**-1	
20:	1024.78 cm**-1	
21:	1061.66 cm**-1	
22:	1071.23 cm**-1	
23:	1156.98 cm**-1	
24:	1167.79 cm**-1	
25:	1179.58 cm**-1	
26:	1284.54 cm**-1	
27:	1286.68 cm**-1	
28:	1481.57 cm**-1	
29:	1514.45 cm**-1	
30:	1655.65 cm**-1	
31:	1666.29 cm**-1	
32:	3216.68 cm**-1	
33:	3227.78 cm**-1	
34:	3236.69 cm**-1	
35:	3241.45 cm**-1	

$Min2(S_1)$

- 0: 0.00 cm**-1
- 1: 0.00 cm**-1
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 5: 0.00 cm**-1
- 0.00 cm**-1
- 6: 0.00 cm**-1
- 7: 139.80 cm**-1
- 8: 176.43 cm**-1
- 9: 177.96 cm**-1
- 10: 316.26 cm**-1

11:	390.31 cm**-1
12:	406.98 cm**-1
13:	494.82 cm**-1
14:	610.02 cm**-1
15:	694.74 cm**-1
16:	699.53 cm**-1
17:	757.37 cm**-1
18:	868.48 cm**-1
19:	950.80 cm**-1
20:	970.89 cm**-1
21:	1024.34 cm**-1
22:	1047.02 cm**-1
23:	1109.24 cm**-1
24:	1133.58 cm**-1
25:	1171.04 cm**-1
26:	1256.61 cm**-1
27:	1307.32 cm**-1
28:	1462.22 cm**-1
29:	1479.91 cm**-1
30:	1605.31 cm**-1
31:	1675.83 cm**-1
32:	3205.25 cm**-1
33:	3213.26 cm**-1
34:	3219.97 cm**-1
35:	3232.42 cm**-1

Min3(T₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	14.53 cm**-1
7:	31.85 cm**-1
8:	51.60 cm**-1
9:	184.49 cm**-1
10:	287.48 cm**-1
11:	420.10 cm**-1
12:	424.37 cm**-1
13:	503.13 cm**-1
14:	623.11 cm**-1
15:	708.70 cm**-1
16:	715.24 cm**-1
17:	766.51 cm**-1
18:	882.16 cm**-1
19:	977.64 cm**-1
20:	988.28 cm**-1
21:	1022.20 cm**-1
22:	1051.01 cm**-1
23:	1120.24 cm**-1
24:	1137.78 cm**-1
25:	1172.27 cm**-1
26:	1250.22 cm**-1

27:	1305.55 cm**-1
28:	1459.68 cm**-1
29:	1481.26 cm**-1
30:	1613.33 cm**-1
31:	1668.32 cm**-1
32:	3207.47 cm**-1
33:	3217.33 cm**-1
34:	3226.38 cm**-1
35:	3234.89 cm**-1

P(S₀)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	12.89 cm**-1
7:	27.64 cm**-1
8:	32.84 cm**-1
9:	47.70 cm**-1
10:	61.87 cm**-1
11:	387.93 cm**-1
12:	400.95 cm**-1
13:	460.29 cm**-1
14:	594.15 cm**-1
15:	626.15 cm**-1
16:	626.32 cm**-1
17:	778.16 cm**-1
18:	848.12 cm**-1
19:	901.01 cm**-1
20:	971.60 cm**-1
21:	1015.94 cm**-1
22:	1019.32 cm**-1
23:	1078.87 cm**-1
24:	1127.12 cm**-1
25:	1171.12 cm**-1
26:	1278.72 cm**-1
27:	1316.53 cm**-1
28:	1449.09 cm**-1
29:	1502.02 cm**-1
30:	1516.19 cm**-1
31:	20/0./0 cm**-1
32:	3201.58 cm**-1
33:	3216.2/ cm**-1
34:	3238.41 cm**-1
35:	3241.55 cm**-1

$MECI-2(S_0/S_1)$

- 0: 0.00 cm**-1
- 1: 0.00 cm**-1
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 0.00 cm**-1

0.00 cm**-1
0.00 cm**-1
0.00 cm**-1
204.70 cm**-1
290.19 cm**-1
299.19 cm**-1
411.95 cm**-1
469.53 cm**-1
545.03 cm**-1
600.48 cm**-1
679.74 cm**-1
760.36 cm**-1
886.81 cm**-1
895.79 cm**-1
918.86 cm**-1
996.35 cm**-1
1028.31 cm**-1
1052.54 cm**-1
1129.11 cm**-1
1167.50 cm**-1
1283.49 cm**-1
1315.97 cm**-1
1419.41 cm**-1
1483.50 cm**-1
1603.55 cm**-1
1669.26 cm**-1
2725.98 cm**-1
3208.68 cm**-1
3227.80 cm**-1
3231.02 cm**-1

35: 3319.47 cm**-1

Min1(S₀)

1,2-di-l	bromo benzene
0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	106.73 cm**-1
7:	134.16 cm**-1
8:	217.10 cm**-1
9:	258.74 cm**-1
10:	369.83 cm**-1
11:	392.44 cm**-1
12:	445.19 cm**-1
13:	522.45 cm**-1
14:	661.97 cm**-1
15:	727.24 cm**-1
16:	739.48 cm**-1
17:	772.84 cm**-1
18:	896.67 cm**-1
19:	990.13 cm**-1
20:	1026.52 cm**-1
21:	1039.50 cm**-1

22:	1071.55 cm**-1
23:	1148.10 cm**-1
24:	1152.26 cm**-1
25:	1176.75 cm**-1
26:	1283.53 cm**-1
27:	1284.80 cm**-1
28:	1475.55 cm**-1
29:	1507.01 cm**-1
30:	1650.64 cm**-1
31:	1660.33 cm**-1
32:	3216.69 cm**-1
33:	3227.47 cm**-1
34:	3236.05 cm**-1
35:	3241.23 cm**-1

Min2(S₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	118.85 cm**-1
8:	150.80 cm**-1
9:	162.83 cm**-1
10:	274.04 cm**-1
11:	316.26 cm**-1
12:	404.89 cm**-1
13:	483.90 cm**-1
14:	612.53 cm**-1
15:	660.76 cm**-1
16:	707.58 cm**-1
17:	761.27 cm**-1
18:	881.93 cm**-1
19:	951.30 cm**-1
20:	976.78 cm**-1
21:	1024.35 cm**-1
22:	1048.32 cm**-1
23:	1082.16 cm**-1
24:	1133.68 cm**-1
25:	1164.94 cm**-1
26:	1269.63 cm**-1
27:	1308.11 cm**-1
28:	1465.88 cm**-1
29:	1471.54 cm**-1
30:	1611.84 cm**-1
31:	1668.63 cm**-1
32:	3199.56 cm**-1
33:	3208.20 cm**-1
34:	3215.34 cm**-1
35:	3230.20 cm**-1

Min3(T₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	12.81 cm**-1
8:	49.44 cm**-1
9:	169.50 cm**-1
10:	240.17 cm**-1
11:	325.34 cm**-1
12:	417.04 cm**-1
13:	491.24 cm**-1
14:	621.91 cm**-1
15:	683.09 cm**-1
16:	708.61 cm**-1
17:	762.97 cm**-1
18:	877.96 cm**-1
19:	978.28 cm**-1
20:	984.51 cm**-1
21:	1025.42 cm**-1
22:	1049.49 cm**-1
23:	1110.07 cm**-1
24:	1132.96 cm**-1
25:	1171.70 cm**-1
26:	1249.49 cm**-1
27:	1307.33 cm**-1
28:	1458.39 cm**-1
29:	1477.93 cm**-1
30:	1611.38 cm**-1
31:	1664.30 cm**-1
32:	3207.04 cm**-1
33:	3216.05 cm**-1
34:	3222.50 cm**-1
35:	3233.48 cm**-1

P(S₀)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	18.00 cm**-1
8:	30.18 cm**-1
9:	40.41 cm**-1
10:	60.50 cm**-1
11:	344.62 cm**-1
12:	389.76 cm**-1
13:	401.44 cm**-1
14:	461.27 cm**-1
15:	624.69 cm**-1

16:	626.60 cm**-1
17:	772.03 cm**-1
18:	848.02 cm**-1
19:	900.44 cm**-1
20:	968.76 cm**-1
21:	1014.56 cm**-1
22:	1016.46 cm**-1
23:	1079.16 cm**-1
24:	1124.00 cm**-1
25:	1166.31 cm**-1
26:	1277.81 cm**-1
27:	1315.99 cm**-1
28:	1447.40 cm**-1
29:	1500.87 cm**-1
30:	1515.84 cm**-1
31:	2069.40 cm**-1
32:	3201.54 cm**-1
33:	3216.19 cm**-1
34.	3238 21 cm**-1

34: 3238.21 cm**-1 35: 3241.56 cm**-1

MECI-2(S₀/S₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	0.00 cm**-1
8:	0.00 cm**-1
9:	164.41 cm**-1
10:	174.20 cm**-1
11:	406.70 cm**-1
12:	428.51 cm**-1
13:	464.54 cm**-1
14:	552.58 cm**-1
15:	673.24 cm**-1
16:	742.34 cm**-1
17:	753.40 cm**-1
18:	881.58 cm**-1
19:	893.64 cm**-1
20:	994.28 cm**-1
21:	1040.06 cm**-1
22:	1043.99 cm**-1
23:	1120.66 cm**-1
24:	1166.26 cm**-1
25:	1269.38 cm**-1
26:	1303.02 cm**-1
27:	1427.57 cm**-1
28:	1432.51 cm**-1
29:	1524.82 cm**-1
30:	1611.26 cm**-1
31:	3061.39 cm**-1
32:	3207.33 cm**-1

33:	3218.13 cm**-1
34:	3228.42 cm**-1
35:	4917.31 cm**-1

Min1(S₀)

1,2-di-iodo benzene

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	91.96 cm**-1
7:	101.03 cm**-1
8:	197.32 cm**-1
9:	214.35 cm**-1
10:	328.29 cm**-1
11:	335.61 cm**-1
12:	437.89 cm**-1
13:	505.84 cm**-1
14:	654.01 cm**-1
15:	707.03 cm**-1
16:	731.44 cm**-1
17:	768.40 cm**-1
18:	894.17 cm**-1
19:	987.83 cm**-1
20:	1024.95 cm**-1
21:	1025.06 cm**-1
22:	1070.62 cm**-1
23:	1132.96 cm**-1
24:	1147.85 cm**-1
25:	1180.01 cm**-1
26:	1274.02 cm**-1
27:	1289.44 cm**-1
28:	1467.76 cm**-1
29:	1499.50 cm**-1
30:	1642.63 cm**-1
31:	1653.61 cm**-1
32:	3214.82 cm**-1
33:	3224.43 cm**-1
34:	3232.04 cm**-1

35: 3238.66 cm**-1

Min2(S₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	48.65 cm**-1
7:	81.28 cm**-1
8:	117.64 cm**-1
9:	147.62 cm**-1
10:	251.91 cm**-1

11:	263.20 cm**-1
12:	407.81 cm**-1
13:	479.02 cm**-1
14:	618.54 cm**-1
15:	639.46 cm**-1
16:	708.24 cm**-1
17:	761.66 cm**-1
18:	886.06 cm**-1
19:	955.16 cm**-1
20:	972.03 cm**-1
21:	1019.74 cm**-1
22:	1048.49 cm**-1
23:	1067.02 cm**-1
24:	1132.54 cm**-1
25:	1164.55 cm**-1
26:	1273.47 cm**-1
27:	1316.51 cm**-1
28:	1463.59 cm**-1
29:	1471.88 cm**-1
30:	1612.82 cm**-1
31:	1659.36 cm**-1
32:	3188.33 cm**-1
33:	3201.27 cm**-1
34:	3209.53 cm**-1
35:	3226.43 cm**-1

Min3(T₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	23.60 cm**-1
7:	35.11 cm**-1
8:	53.90 cm**-1
9:	157.19 cm**-1
10:	210.19 cm**-1
11:	276.74 cm**-1
12:	426.49 cm**-1
13:	482.92 cm**-1
14:	621.80 cm**-1
15:	667.80 cm**-1
16:	706.66 cm**-1
17:	772.84 cm**-1
18:	894.25 cm**-1
19:	981.58 cm**-1
20:	989.21 cm**-1
21:	1029.55 cm**-1
22:	1052.13 cm**-1
23:	1102.03 cm**-1
24:	1135.14 cm**-1
25:	1177.51 cm**-1
26:	1254.50 cm**-1

27:	1307.31 cm**-1
28:	1455.59 cm**-1
29:	1478.00 cm**-1
30:	1607.69 cm**-1
31:	1658.75 cm**-1
32:	3205.39 cm**-1
33:	3214.45 cm**-1
34:	3222.08 cm**-1
35:	3231.43 cm**-1

P(S₀)

	·	· ·		
B	en	zyne	+	I_2

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	0.00 cm**-1
8:	0.00 cm**-1
9:	43.48 cm**-1
10:	55.85 cm**-1
11:	230.38 cm**-1
12:	387.90 cm**-1
13:	399.08 cm**-1
14:	454.09 cm**-1
15:	619.81 cm**-1
16:	625.82 cm**-1
17:	755.79 cm**-1
18:	848.98 cm**-1
19:	886.95 cm**-1
20:	957.13 cm**-1
21:	1005.65 cm**-1
22:	1014.00 cm**-1
23:	1077.75 cm**-1
24:	1118.43 cm**-1
25:	1157.49 cm**-1
26:	1275.50 cm**-1
27:	1314.84 cm**-1
28:	1445.12 cm**-1
29:	1499.47 cm**-1
30:	1515.50 cm**-1
31:	2065.60 cm**-1
32:	3201.97 cm**-1
33:	3216.82 cm**-1
34:	3239.40 cm**-1
35:	3241.78 cm**-1

$MECI-2(S_0/S_1)$

- 0: 0.00 cm**-1
- 1: 0.00 cm**-1
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 0.00 cm**-1

5:	0.00 cm**-1
6:	0.00 cm**-1
7:	46.58 cm**-1
8:	119.41 cm**-1
9:	143.71 cm**-1
10:	174.35 cm**-1
11:	401.23 cm**-1
12:	418.60 cm**-1
13:	470.76 cm**-1
14:	565.51 cm**-1
15:	651.27 cm**-1
16:	678.15 cm**-1
17:	767.76 cm**-1
18:	881.50 cm**-1
19:	936.02 cm**-1
20:	981.26 cm**-1
21:	1021.90 cm**-1
22:	1041.07 cm**-1
23:	1110.24 cm**-1
24:	1164.16 cm**-1
25:	1214.21 cm**-1
26:	1279.48 cm**-1
27:	1341.64 cm**-1
28:	1474.06 cm**-1
29:	1501.86 cm**-1
30:	1626.01 cm**-1
31:	1816.79 cm**-1
32:	3171.69 cm**-1
33.	3203 93 cm**-1

33: 3203.93 cm**-1 34: 3223.15 cm**-1

Min1(S₀)

1,2,4 di-iodo methyl benzene

0:	0.00 cm^{**-1}
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	58.09 cm**-1
7:	81.21 cm**-1
8:	100.40 cm**-1
9:	151.83 cm**-1
10:	175.50 cm**-1
11:	268.13 cm**-1
12:	293.87 cm**-1
13:	318.57 cm**-1
14:	411.48 cm**-1
15:	442.87 cm**-1
16:	546.83 cm**-1
17:	596.38 cm**-1
18:	683.87 cm**-1
19:	728.66 cm**-1
20:	836.96 cm**-1
21:	862.56 cm**-1
22:	911.83 cm**-1

23:	993.91 cm**-1
24:	1018.34 cm**-1
25:	1038.89 cm**-1
26:	1075.10 cm**-1
27:	1140.34 cm**-1
28:	1166.90 cm**-1
29:	1245.78 cm**-1
30:	1276.75 cm**-1
31:	1295.38 cm**-1
32:	1418.36 cm**-1
33:	1421.64 cm**-1
34:	1484.82 cm**-1
35:	1487.93 cm**-1
36:	1517.90 cm**-1
37:	1631.02 cm**-1
38:	1672.36 cm**-1
39:	3070.42 cm**-1
40:	3141.96 cm**-1
41:	3163.88 cm**-1
42:	3205.79 cm**-1
43:	3216.22 cm**-1
44:	3228.75 cm**-1

Min2(S₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	47.67 cm**-1
7:	79.06 cm**-1
8:	91.11 cm**-1
9:	103.27 cm**-1
10:	112.64 cm**-1
11:	224.67 cm**-1
12:	238.16 cm**-1
13:	283.01 cm**-1
14:	379.28 cm**-1
15:	413.31 cm**-1
16:	511.37 cm**-1
17:	565.23 cm**-1
18:	634.70 cm**-1
19:	711.54 cm**-1
20:	788.18 cm**-1
21:	830.21 cm**-1
22:	900.58 cm**-1
23:	981.49 cm**-1
24:	989.64 cm**-1
25:	1022.53 cm**-1
26:	1072.07 cm**-1
27:	1077.06 cm**-1
28:	1153.85 cm**-1
29:	1229.89 cm**-1
30:	1279.78 cm**-1

1306.06 cm**-1
1417.52 cm**-1
1420.26 cm**-1
1486.73 cm**-1
1487.71 cm**-1
1493.18 cm**-1
1616.71 cm**-1
1663.61 cm**-1
3068.21 cm**-1
3139.41 cm**-1
3161.13 cm**-1
3177.29 cm**-1
3194.01 cm**-1
3209.54 cm**-1

Min3(T₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	17.51 cm**-1
7:	39.32 cm**-1
8:	71.76 cm**-1
9:	88.40 cm**-1
10:	122.59 cm**-1
11:	181.48 cm**-1
12:	251.48 cm**-1
13:	280.91 cm**-1
14:	365.17 cm**-1
15:	419.41 cm**-1
16:	517.18 cm**-1
17:	588.57 cm**-1
18:	640.61 cm**-1
19:	699.95 cm**-1
20:	803.01 cm**-1
21:	845.57 cm**-1
22:	884.35 cm**-1
23:	997.69 cm**-1
24:	1004.34 cm**-1
25:	1017.15 cm**-1
26:	1073.55 cm**-1
27:	1105.81 cm**-1
28:	1166.45 cm**-1
29:	1225.39 cm**-1
30:	1265.07 cm**-1
31:	1295.49 cm**-1
32:	1416.16 cm**-1
33:	1418.96 cm**-1
34:	1480.90 cm**-1
35:	1485.78 cm**-1
36:	1506.45 cm**-1
37:	1599.14 cm**-1
38:	1669.60 cm**-1

39:	3075.41 cm**-1
40:	3144.90 cm**-1
41:	3169.70 cm**-1
42:	3203.00 cm**-1
43:	3204.99 cm**-1
44:	3220.92 cm**-1

P(S₀)

Ô٠	0.00 cm**-1
1	
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5.	0.00 cm**-1
6.	0.00 cm^{**}
0.	0.00 cm^{-1}
/:	0.00 cm**-1
8:	15.94 cm**-1
9:	36.34 cm**-1
10:	41.54 cm**-1
11:	180.69 cm**-1
12:	231.02 cm**-1
13:	240.67 cm**-1
14.	361 93 cm**-1
15.	376.85 cm**-1
16.	$407.76 \text{ cm}^{**} 1$
10.	407.70 cm ⁺⁺ = 1
17:	400.54 cm**-1
18:	584.76 cm**-1
19:	645.14 cm**-1
20:	689.95 cm**-1
21:	835.86 cm**-1
22:	910.99 cm**-1
23:	936.66 cm**-1
24:	982.58 cm**-1
25.	1018 61 cm**-1
26·	1072 96 cm**-1
20.	1072.00 cm^{-1}
27.	10/3.02 cm ⁺⁺ -1
28:	1149./1 cm**-1
29:	1218.85 cm**-1
30:	1273.87 cm**-1
31:	1327.64 cm**-1
32:	1402.32 cm**-1
33:	1421.87 cm**-1
34:	1476.75 cm**-1
35:	1487.86 cm**-1
36.	1506 92 cm**-1
37.	1552.56 cm^{**}
20.	1002.00 cm^{-1}
<i>30.</i>	2072.41 CIII ⁺⁺ -1
39: 40	50/0.50 cm ^{**} -1
40:	3141.49 cm**-1
41:	3160.80 cm**-1
42:	3195.67 cm**-1
43:	3224.68 cm**-1
44:	3234.07 cm**-1

 $MECI-2(S_0/S_1)$

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	38.14 cm**-1
8:	50.36 cm**-1
9:	81.49 cm**-1
10:	119.48 cm**-1
11:	163.69 cm**-1
12:	260.53 cm**-1
13:	312.60 cm**-1
14:	394.21 cm**-1
15:	417.33 cm**-1
16:	474.23 cm**-1
17:	495.25 cm**-1
18:	523.35 cm**-1
19:	679.39 cm**-1
20:	744.61 cm**-1
21:	828.53 cm**-1
22:	885.75 cm**-1
23:	965.50 cm**-1
24:	986.03 cm**-1
25:	1024.06 cm**-1
26:	1049.61 cm**-1
27:	1072.37 cm**-1
28:	1148.74 cm**-1
29:	1211.20 cm**-1
30:	1266.99 cm**-1
31:	1326.11 cm**-1
32:	1393.64 cm**-1
33:	$1422.3 / \text{ cm}^{*} - 1$
34:	1485.90 cm**-1
35: 26.	1488.34 cm**-1
30: 27.	1518.55 cm**-1
37: 20.	1590.81 cm**-1
38: 20:	$1//2.85 \text{ cm}^{**-1}$
37. 10.	30/0.73 CIII ^{••} -1 3140.38 cm** 1
40. ∕11.	3140.30 CIII ^{••} -1 3150.37 cm** 1
41. 10.	3137.37 CIII ^{••} -1 3104.88 cm** 1
4∠. ∕12·	3194.00 CIII ¹ 3208.05 cm** 1
+J.	5200.75 Cm ⁻¹

Min1(S₀)

44:

1,2,4- di-iodo formyl benzene

3210.22 cm**-1

- 0: 0.00 cm**-1
- 1: 0.00 cm**-1
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 0.00 cm^{**-1}
- 5: 0.00 cm**-1
- 6: 44.18 cm**-1
- 7: 75.33 cm**-1

8:	100.44 cm**-1
9:	128.94 cm**-1
10:	176.04 cm**-1
11:	241.94 cm**-1
12:	264.88 cm**-1
13:	283.68 cm**-1
14:	352.09 cm**-1
15:	444.72 cm**-1
16:	520.81 cm**-1
17:	539.87 cm**-1
18:	662.38 cm**-1
19:	729.01 cm**-1
20:	733.31 cm**-1
21:	855.26 cm**-1
22:	875.19 cm**-1
23:	930.66 cm**-1
24:	1015.19 cm**-1
25:	1037.84 cm**-1
26:	1046.21 cm**-1
27:	1130.46 cm**-1
28:	1157.09 cm**-1
29:	1231.55 cm**-1
30:	1280.91 cm**-1
31:	1298.31 cm**-1
32:	1396.04 cm**-1
33:	1441.22 cm**-1
34:	1513.39 cm**-1
35:	1634.22 cm**-1
36:	1665.57 cm**-1
37:	1815.79 cm**-1
38:	2972.22 cm**-1
39:	3213.17 cm**-1
40:	3227.16 cm**-1

41: 3239.72 cm**-1

Min2(S₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	41.30 cm**-1
7:	65.14 cm**-1
8:	78.34 cm**-1
9:	102.97 cm**-1
10:	132.05 cm**-1
11:	175.59 cm**-1
12:	220.25 cm**-1
13:	279.31 cm**-1
14:	293.50 cm**-1
15:	416.63 cm**-1
16:	489.03 cm**-1
17:	506.14 cm**-1
18:	631.69 cm**-1

19:	673.89 cm**-1
20:	716.54 cm**-1
21:	826.19 cm**-1
22:	850.80 cm**-1
23:	924.84 cm**-1
24:	997.31 cm**-1
25:	1006.44 cm**-1
26:	1048.52 cm**-1
27:	1072.84 cm**-1
28:	1145.23 cm**-1
29:	1213.74 cm**-1
30:	1288.00 cm**-1
31:	1321.51 cm**-1
32:	1396.26 cm**-1
33:	1435.97 cm**-1
34:	1489.09 cm**-1
35:	1614.80 cm**-1
36:	1658.06 cm**-1
37:	1810.36 cm**-1
38:	2967.63 cm**-1
39:	3174.18 cm**-1
40:	3207.09 cm**-1
41:	3231.57 cm**-1

$Min3(T_1)$

0.00 cm**-1
0.00 cm**-1
36.53 cm**-1
68.19 cm**-1
73.05 cm**-1
130.12 cm**-1
147.34 cm**-1
222.95 cm**-1
276.40 cm**-1
282.16 cm**-1
424.69 cm**-1
501.79 cm**-1
509.83 cm**-1
630.43 cm**-1
682.15 cm**-1
707.71 cm**-1
835.45 cm**-1
857.64 cm**-1
908.49 cm**-1
1009.08 cm**-1
1011.84 cm**-1
1049.29 cm**-1

27:	1102.38 cm**-1
28:	1151.17 cm**-1
29:	1204.03 cm**-1
30:	1267.29 cm**-1
31:	1307.73 cm**-1
32:	1398.99 cm**-1
33:	1431.80 cm**-1
34:	1497.76 cm**-1
35:	1598.97 cm**-1
36:	1664.28 cm**-1
37:	1815.01 cm**-1
38:	2975.77 cm**-1
39:	3202.73 cm**-1
40:	3220.32 cm**-1
41:	3235.69 cm**-1

P(S₀)

0.00 cm**-1
0.00 cm**-1
23.27 cm**-1
38.58 cm**-1
44.11 cm**-1
104.95 cm**-1
231.09 cm**-1
234.11 cm**-1
250.20 cm**-1
380.59 cm**-1
406.33 cm**-1
473.92 cm**-1
485.46 cm**-1
643.06 cm**-1
646.38 cm**-1
756.01 cm**-1
853.06 cm**-1
928.11 cm**-1
939.74 cm**-1
1005.78 cm**-1
1052.96 cm**-1
1072.51 cm**-1
1133.53 cm**-1
1214.30 cm**-1
1273.94 cm**-1
1333.50 cm**-1
1393.38 cm**-1
1445.45 cm**-1
1497.18 cm**-1
1541.13 cm**-1
1809.02 cm**-1
2069.81 cm**-1

38:	2968.69 cm**-1
39:	3221.65 cm**-1
40:	3222.86 cm**-1
41:	3247.41 cm**-1

MECI-2(S₀/S₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	52.94 cm**-1
8:	68.64 cm**-1
9:	73.75 cm**-1
10:	141.23 cm**-1
11:	159.76 cm**-1
12:	221.55 cm**-1
13:	267.48 cm**-1
14:	381.03 cm**-1
15:	409.82 cm**-1
16:	421.89 cm**-1
17:	499.52 cm**-1
18:	548.98 cm**-1
19:	666.07 cm**-1
20:	687.04 cm**-1
21:	810.28 cm**-1
22:	854.28 cm**-1
23:	914.59 cm**-1
24:	960.55 cm**-1
25:	1002.31 cm**-1
26:	1009.86 cm**-1
27:	1049.55 cm**-1
28:	1145.92 cm**-1
29:	1202.39 cm**-1
30:	1276.90 cm**-1
31:	1338.75 cm**-1
32:	1386.89 cm**-1
33:	1431.65 cm**-1
34:	1494.81 cm**-1
35:	1602.95 cm**-1
36:	1695.07 cm**-1
37:	1809.68 cm**-1
38:	29/1.34 cm**-1
39:	3189.64 cm**-1
40:	3203.96 cm**-1
41:	3229.01 cm**-1

Min1(S₀)

1,2,4-di-iodo cyano benzene 0: 0.00 cm**-1

- 1: 0.00 cm**-1 0.00 cm**-1
- 2:
- 3: 0.00 cm**-1

4:	0.00 cm**-1
5:	0.00 cm**-1
6:	67.55 cm**-1
7:	100.41 cm**-1
8:	113.59 cm**-1
9:	131.19 cm**-1
10:	218.14 cm**-1
11:	240.33 cm**-1
12:	290.74 cm**-1
13:	337.17 cm**-1
14:	434.63 cm**-1
15:	468.31 cm**-1
16:	540.24 cm**-1
17:	592.87 cm**-1
18:	617.43 cm**-1
19:	688.36 cm**-1
20:	736.54 cm**-1
21:	844.53 cm**-1
22:	862.01 cm**-1
23:	942.87 cm**-1
24:	1009.65 cm**-1
25:	1041.06 cm**-1
26:	1142.30 cm**-1
27:	1179.05 cm**-1
28:	1232.13 cm**-1
29:	1266.46 cm**-1
30:	1305.61 cm**-1
31:	1420.29 cm**-1
32:	1512.96 cm**-1
33:	1620.50 cm**-1
34:	1666.55 cm**-1
35:	2403.50 cm**-1
36:	3228.94 cm**-1
37:	3235.49 cm**-1

38: 3242.82 cm**-1

$Min2(S_1)$

- 0: 0.00 cm**-1
- 1: 0.00 cm**-1
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 0.00 cm**-1
- 5: 0.00 cm**-1
- 6: 49.03 cm**-1
- 7: 72.19 cm**-1
- 8: 79.21 cm**-1
- 9: 100.69 cm**-1
- 10: 156.14 cm**-1
- 11: 215.48 cm**-1
- 12: 228.39 cm**-1
- 13: 273.26 cm**-1
- 14: 403.71 cm**-1
- 15: 448.83 cm**-1
- 16: 511.65 cm**-1
- 17: 582.07 cm**-1
- 18: 589.27 cm**-1

19:	651.04 cm**-1
20:	725.33 cm**-1
21:	766.79 cm**-1
22:	850.53 cm**-1
23:	932.05 cm**-1
24:	994.47 cm**-1
25:	999.44 cm**-1
26:	1078.61 cm**-1
27:	1159.05 cm**-1
28:	1211.45 cm**-1
29:	1288.46 cm**-1
30:	1299.34 cm**-1
31:	1418.38 cm**-1
32:	1486.49 cm**-1
33:	1606.63 cm**-1
34:	1660.33 cm**-1
35:	2397.69 cm**-1
36:	3201.29 cm**-1
37:	3209.71 cm**-1

38: 3237.18 cm**-1

Min3(T₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	31.31 cm**-1
7:	38.42 cm**-1
8:	65.39 cm**-1
9:	75.19 cm**-1
10:	130.58 cm**-1
11:	219.01 cm**-1
12:	233.08 cm**-1
13:	239.39 cm**-1
14:	414.73 cm**-1
15:	448.25 cm**-1
16:	534.09 cm**-1
17:	580.13 cm**-1
18:	594.09 cm**-1
19:	647.18 cm**-1
20:	715.60 cm**-1
21:	777.13 cm**-1
22:	858.39 cm**-1
23:	921.67 cm**-1
24:	1002.61 cm**-1
25:	1011.10 cm**-1
26:	1106.67 cm**-1
27:	1164.72 cm**-1
28:	1207.40 cm**-1
29:	1263.79 cm**-1
30:	1291.86 cm**-1
31:	1414.78 cm**-1
32:	1498.12 cm**-1

33:	1588.11 cm**-1
34:	1667.37 cm**-1
35:	2401.83 cm**-1
36:	3222.91 cm**-1
37:	3226.97 cm**-1
38:	3241.21 cm**-1

P(S₀)

L ((30)	
0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	13.13 cm**-1
8:	22.23 cm**-1
9:	40.04 cm**-1
10:	46.95 cm**-1
11:	164.75 cm**-1
12:	174.88 cm**-1
13:	231.37 cm**-1
14:	389.84 cm**-1
15:	407.12 cm**-1
16:	449.67 cm**-1
17:	520.10 cm**-1
18:	539.23 cm**-1
19:	589.56 cm**-1
20:	669.50 cm**-1
21:	685.14 cm**-1
22:	851.87 cm**-1
23:	931.51 cm**-1
24:	935.81 cm**-1
25:	996.74 cm**-1
26:	1073.41 cm**-1
27:	1149.91 cm**-1
28:	1203.30 cm**-1
29:	1270.71 cm**-1
30:	1317.19 cm**-1
31:	1405.12 cm**-1
32:	1485.67 cm**-1
33:	1546.14 cm**-1
34:	2064.51 cm**-1
35:	2398.70 cm**-1
36:	3223.99 cm**-1
37:	3241.52 cm**-1
38:	3252.58 cm**-1

$MECI-2(S_1/S_0)$

- 0: 0.00 cm**-1
- 1: 0.00 cm**-1
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 0.00 cm**-1
- 5: 0.00 cm**-1

6:	0.00 cm**-1
7:	13.13 cm**-1
8:	22.23 cm**-1
9:	40.04 cm**-1
10:	46.95 cm**-1
11:	164.75 cm**-1
12:	174.88 cm**-1
13:	231.37 cm**-1
14:	389.84 cm**-1
15:	407.12 cm**-1
16:	449.67 cm**-1
17:	520.10 cm**-1
18:	539.23 cm**-1
19:	589.56 cm**-1
20:	669.50 cm**-1
21:	685.14 cm**-1
22:	851.87 cm**-1
23:	931.51 cm**-1
24:	935.81 cm**-1
25:	996.74 cm**-1
26:	1073.41 cm**-1
27:	1149.91 cm**-1
28:	1203.30 cm**-1
29:	1270.71 cm**-1
30:	1317.19 cm**-1
31:	1405.12 cm**-1
32:	1485.67 cm**-1
33:	1546.14 cm**-1
34:	2064.51 cm**-1
35:	2398.70 cm**-1
36:	3223.99 cm**-1
37.	3241 52 cm**-1

37: 3241.52 cm**-1 38: 3252.58 cm**-1

Min1(S₀)

1,2,4-di-iodo nitro benzene

- 0: 0.00 cm**-1 1: 0.00 cm**-1 2: 0.00 cm**-1 3: 0.00 cm**-1 4: 0.00 cm**-1 5: 0.00 cm**-1 0.00 cm**-1 6: 7: 66.12 cm**-1 8: 100.09 cm**-1 9: 130.60 cm**-1 10: 138.26 cm**-1 11: 219.24 cm**-1 271.84 cm**-1 12: 13: 275.48 cm**-1 14: 367.14 cm**-1
- 15: 440.77 cm**-1
- 16: 488.91 cm^{**-1}
- 10: 488.91 cm^{++-1} 17: 523.21 cm^{++-1}
- $17. 525.21 \text{ cm}^{-1}$
- 18: 555.14 cm**-1
- 19: 671.90 cm**-1

20:	717.25 cm**-1
21:	766.84 cm**-1
22:	778.34 cm**-1
23:	865.82 cm**-1
24:	908.70 cm**-1
25:	957.33 cm**-1
26:	1010.17 cm**-1
27:	1039.56 cm**-1
28:	1127.62 cm**-1
29:	1156.57 cm**-1
30:	1163.86 cm**-1
31:	1284.71 cm**-1
32:	1285.71 cm**-1
33:	1419.30 cm**-1
34:	1464.28 cm**-1
35:	1501.84 cm**-1
36:	1637.67 cm**-1
37:	1653.81 cm**-1
38:	1694.74 cm**-1
39:	3237.75 cm**-1
40:	3259.02 cm**-1
41:	3264.33 cm**-1

Min2(S₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	66.12 cm**-1
8:	100.09 cm**-1
9:	130.60 cm**-1
10:	138.26 cm**-1
11:	219.24 cm**-1
12:	271.84 cm**-1
13:	275.48 cm**-1
14:	367.14 cm**-1
15:	440.77 cm**-1
16:	488.91 cm**-1
17:	523.21 cm**-1
18:	555.14 cm**-1
19:	671.90 cm**-1
20:	717.25 cm**-1
21:	766.84 cm**-1
22:	778.34 cm**-1
23:	865.82 cm**-1
24:	908.70 cm**-1
25:	957.33 cm**-1
26:	1010.17 cm**-1
27:	1039.56 cm**-1
28:	1127.62 cm**-1
29:	1156.57 cm**-1
30:	1163.86 cm**-1

31:	1284.71 cm**-1
32:	1285.71 cm**-1
33:	1419.30 cm**-1
34:	1464.28 cm**-1
35:	1501.84 cm**-1
36:	1637.67 cm**-1
37:	1653.81 cm**-1
38:	1694.74 cm**-1
39:	3237.75 cm**-1
40:	3259.02 cm**-1
41:	3264.33 cm**-1

$Min3(T_1)$

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3.	0 00 cm**-1
4·	0.00 cm**-1
5:	0.00 cm**-1
6:	25.95 cm**-1
7.	37 47 cm**-1
8.	56 58 cm**-1
9.	65 31 cm**-1
10·	78 34 cm**-1
11.	151 72 cm**-1
12.	215 33 cm**-1
13.	258 49 cm**-1
14·	299 18 cm**-1
15	423 81 cm**-1
16 [.]	477 30 cm**-1
17:	497.76 cm**-1
18:	540.10 cm**-1
19:	628.83 cm**-1
20:	694.33 cm**-1
21:	721.83 cm**-1
22:	777.21 cm**-1
23:	866.27 cm**-1
24:	887.41 cm**-1
25:	937.37 cm**-1
26:	1006.63 cm**-1
27:	1008.75 cm**-1
28:	1102.62 cm**-1
29:	1139.47 cm**-1
30:	1149.79 cm**-1
31:	1257.43 cm**-1
32:	1312.65 cm**-1
33:	1410.56 cm**-1
34:	1462.91 cm**-1
35:	1483.36 cm**-1
36:	1610.14 cm**-1
37:	1659.45 cm**-1
38:	1689.65 cm**-1
39:	3224.99 cm**-1
40:	3246.55 cm**-1
41:	3263.54 cm**-1

P(S₀)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	0.00 cm**-1
8:	28.27 cm**-1
9:	36.91 cm**-1
10:	38.73 cm**-1
11:	59.48 cm**-1
12:	193.53 cm**-1
13:	230.41 cm**-1
14:	276.86 cm**-1
15:	384.54 cm**-1
16:	391.65 cm**-1
17:	463.71 cm**-1
18:	473.11 cm**-1
19:	534.98 cm**-1
20:	620.64 cm**-1
21:	644.82 cm**-1
22:	774.06 cm**-1
23:	845.71 cm**-1
24:	869.03 cm**-1
25:	941.18 cm**-1
26:	945.90 cm**-1
27:	996.63 cm**-1
28:	1070.42 cm**-1
29:	1125.26 cm**-1
30:	1152.13 cm**-1
31:	1262.58 cm**-1
32:	1334.83 cm**-1
33:	1420.92 cm**-1
34:	1463.52 cm**-1
35:	1502.50 cm**-1
36:	1533.62 cm**-1
37:	1668.92 cm**-1
38:	2068.32 cm**-1
39: 10	3247.93 cm**-1
40:	3239.74 cm**-1

41: 3266.09 cm**-1

$MECI-2(S_1/S_0)$

- 0: 0.00 cm**-1
- 1: 0.00 cm**-1
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 0.00 cm**-1
- 5: 0.00 cm**-1
- 6: 0.00 cm**-1
- 7: 32.50 cm**-1

8:	57.12 cm**-1
9:	92.75 cm**-1
10:	93.25 cm**-1
11:	162.74 cm**-1
12:	241.71 cm**-1
13:	244.10 cm**-1
14:	362.81 cm**-1
15:	416.46 cm**-1
16:	445.66 cm**-1
17:	489.13 cm**-1
18:	543.92 cm**-1
19:	599.52 cm**-1
20:	674.80 cm**-1
21:	677.97 cm**-1
22:	778.34 cm**-1
23:	869.35 cm**-1
24:	878.60 cm**-1
25:	940.27 cm**-1
26:	971.17 cm**-1
27:	1010.76 cm**-1
28:	1042.65 cm**-1
29:	1129.84 cm**-1
30:	1165.29 cm**-1
31:	1267.57 cm**-1
32:	1355.62 cm**-1
33:	1420.70 cm**-1
34:	1463.29 cm**-1
35:	1474.34 cm**-1
36:	1626.03 cm**-1
37:	1665.33 cm**-1
38:	1716.93 cm**-1
39:	3181.03 cm**-1

- 40: 3249.49 cm**-1
- 41: 3261.75 cm**-1

Min1(S₀)

1,2,4-di-iodo methoxy benzene

- 0: 0.00 cm^{**-1}
- 1: 0.00 cm^{**-1}
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 0.00 cm**-1
- 5: 0.00 cm**-1
- 6: 0.00 cm**-1
- 7: 32.50 cm**-1
- 8: 57.12 cm**-1
- 9: 92.75 cm**-1
- 10: 93.25 cm**-1
- 11: 162.74 cm**-1
- 12: 241.71 cm**-1
- 13: 244.10 cm**-1
- 14: 362.81 cm**-1
- 15: 416.46 cm**-1
- 16: 445.66 cm**-1
- 17: 489.13 cm**-1
- 18: 543.92 cm**-1

19:	599.52 cm**-1
20:	674.80 cm**-1
21:	677.97 cm**-1
22:	778.34 cm**-1
23:	869.35 cm**-1
24:	878.60 cm**-1
25:	940.27 cm**-1
26:	971.17 cm**-1
27:	1010.76 cm**-1
28:	1042.65 cm**-1
29:	1129.84 cm**-1
30:	1165.29 cm**-1
31:	1267.57 cm**-1
32:	1355.62 cm**-1
33:	1420.70 cm**-1
34:	1463.29 cm**-1
35:	1474.34 cm**-1
36:	1626.03 cm**-1
37:	1665.33 cm**-1
38:	1716.93 cm**-1
39:	3181.03 cm**-1
40:	3249.49 cm**-1

41: 3261.75 cm**-1

Min2(S₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	41.01 cm**-1
7:	71.36 cm**-1
8:	107.15 cm**-1
9:	115.00 cm**-1
10:	131.76 cm**-1
11:	161.24 cm**-1
12:	251.76 cm**-1
13:	253.09 cm**-1
14:	317.32 cm**-1
15:	335.67 cm**-1
16:	419.62 cm**-1
17:	464.93 cm**-1
18:	569.59 cm**-1
19:	570.44 cm**-1
20:	646.60 cm**-1
21:	699.15 cm**-1
22:	799.60 cm**-1
23:	836.33 cm**-1
24:	865.22 cm**-1
25:	979.01 cm**-1
26:	984.19 cm**-1
27:	1077.56 cm**-1
28:	1092.89 cm**-1
29:	1133.94 cm**-1

30:	1188.63 cm**-1
31:	1216.97 cm**-1
32:	1266.62 cm**-1
33:	1288.62 cm**-1
34:	1342.82 cm**-1
35:	1419.70 cm**-1
36:	1474.71 cm**-1
37:	1499.43 cm**-1
38:	1505.28 cm**-1
39:	1511.55 cm**-1
40:	1627.28 cm**-1
41:	1670.17 cm**-1
42:	3045.23 cm**-1
43:	3115.43 cm**-1
44:	3184.27 cm**-1
45:	3190.09 cm**-1
46:	3219.65 cm**-1
47:	3233.05 cm**-1

Min3(T₁)

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	0.00 cm**-1
7:	32.61 cm**-1
8:	68.34 cm**-1
9:	121.26 cm**-1
10:	136.58 cm**-1
11:	144.52 cm**-1
12:	247.47 cm**-1
13:	262.65 cm**-1
14:	317.07 cm**-1
15:	336.10 cm**-1
16:	430.92 cm**-1
17:	463.22 cm**-1
18:	565.72 cm**-1
19:	570.08 cm**-1
20:	657.10 cm**-1
21:	693.78 cm**-1
22:	826.10 cm**-1
23:	837.06 cm**-1
24:	877.15 cm**-1
25:	982.61 cm**-1
26:	992.42 cm**-1
27:	1090.31 cm**-1
28:	1099.47 cm**-1
29:	1134.36 cm**-1
30:	1190.68 cm**-1
31:	1220.26 cm**-1
32:	1258.67 cm**-1
33:	1283.76 cm**-1
34:	1338.86 cm**-1

35:	1414.02 cm**-1
36:	1474.56 cm**-1
37:	1500.67 cm**-1
38:	1503.85 cm**-1
39:	1512.06 cm**-1
40:	1630.26 cm**-1
41:	1654.23 cm**-1
42:	3047.86 cm**-1
43:	3119.07 cm**-1
44:	3186.20 cm**-1
45:	3216.50 cm**-1
46:	3230.92 cm**-1
47:	3244.79 cm**-1

P(S₀)

0:	0.00 cm**-1				
1:	0.00 cm**-1				
2:	0.00 cm**-1				
3:	0.00 cm**-1				
4:	0.00 cm**-1				
5:	0.00 cm**-1				
6:	0.00 cm**-1				
7:	0.00 cm**-1				
8:	21.54 cm**-1				
9:	27.02 cm**-1				
10:	42.42 cm**-1				
11:	100.66 cm**-1				
12:	223.95 cm**-1				
13:	230.12 cm**-1				
14:	279.87 cm**-1				
15:	294.96 cm**-1				
16:	378.39 cm**-1				
17:	402.41 cm**-1				
18:	459.43 cm**-1				
19:	478.83 cm**-1				
20:	595.55 cm**-1				
21:	679.73 cm**-1				
22:	688.86 cm**-1				
23:	856.21 cm**-1				
24:	864.95 cm**-1				
25:	936.13 cm**-1				
26:	982.70 cm**-1				
27:	1071.75 cm**-1				
28:	1092.14 cm**-1				
29:	1135.93 cm**-1				
30:	1179.72 cm**-1				
31:	1209.74 cm**-1				
32:	1260.09 cm**-1				
33:	1278.24 cm**-1				
34:	1378.40 cm**-1				
35:	1415.75 cm**-1				
36:	1474.86 cm**-1				
37:	1489.16 cm**-1				
38:	1492.68 cm**-1				
39:	1501.77 cm**-1				

5:	0.00 cm**-1				
6:	0.00 cm**-1				
7:	0.00 cm**-1				
8:	103.12 cm**-1				
9:	135.24 cm**-1				
10:	140.64 cm**-1				
11:	145.46 cm**-1				
12:	250.95 cm**-1				
13:	318.13 cm**-1				
14:	323.99 cm**-1				
15:	405.50 cm**-1				
16:	422.63 cm**-1				
17:	510.44 cm**-1				
18:	531.23 cm**-1				
19:	537.52 cm**-1				
20:	681.98 cm**-1				
21:	710.19 cm**-1				
22:	764.62 cm**-1				
23:	822.45 cm**-1				
24:	891.17 cm**-1				
25:	966.82 cm**-1				
26:	979.04 cm**-1				
27:	1083.82 cm**-1				
28:	1131.13 cm**-1				
29:	1193.48 cm**-1				
30:	1216.29 cm**-1				
31:	12//.8/ cm**-1				
32:	1282.62 cm**-1				
33:	1303.42 cm**-1				
34: 25.	1401.49 cm**-1				
33: 26.	$1422.94 \text{ cm}^{++-1}$				
30. 27.	1492.00 cm ⁺⁺ -1				
57. 28.	1505.55 cm ⁺⁺ -1				
30. 30.	1511.20 cm^{*-1}				
<i>39.</i> 40∙	1595.54 cm^{-1}				
41·	$2980.65 \text{ cm}^{+}\text{m}^{-1}$				
42·	3045 10 cm**-1				
43.	3115 56 cm**-1				
44·	3187 98 cm**_1				
чт.	J10/./0 UII -1				

$MECI-2(S_1/S_0)$

40:

41:

42:

43:

44:

45:

46:

47:

0: 1:

2:

3:

4:

1568.72 cm**-1

2071.92 cm**-1

3044.98 cm**-1

3116.82 cm**-1

3184.67 cm**-1

3218.91 cm**-1

3239.78 cm**-1

3256.58 cm**-1

0.00 cm**-1

0.00 cm**-1

0.00 cm**-1

0.00 cm**-1

0.00 cm**-1

45:	3213.50 cm**-1
46:	3231.79 cm**-1
47:	3504.82 cm**-1

Min1(S₀)

1,2,4-di-iodo hydroxy benzene

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	76.94 cm**-1
7:	100.35 cm**-1
8:	152.53 cm**-1
9:	178.32 cm**-1
10:	273.22 cm**-1
11:	310.02 cm**-1
12:	318.75 cm**-1
13:	330.86 cm**-1
14:	446.75 cm**-1
15:	459.75 cm**-1
16:	586.56 cm**-1
17:	606.25 cm**-1
18:	686.47 cm**-1
19:	716.56 cm**-1
20:	830.15 cm**-1
21:	893.90 cm**-1
22:	899.09 cm**-1
23:	970.40 cm**-1
24:	1031.76 cm**-1
25:	1132.06 cm**-1
26:	1164.37 cm**-1
27:	1199.94 cm**-1
28:	1263.96 cm**-1
29:	1301.56 cm**-1
30:	1322.13 cm**-1
31:	1462.26 cm**-1
32:	1517.79 cm**-1
33:	1647.91 cm**-1
34:	1674.16 cm**-1
35:	3207.62 cm**-1
36:	3230.34 cm**-1
37:	3235.95 cm**-1

38: 3857.79 cm**-1

Min2(S₁)

- 0: 0.00 cm**-1
- 1: 0.00 cm**-1
- 2: 0.00 cm**-1
- 3: 0.00 cm**-1
- 4: 0.00 cm**-1
- 5: 0.00 cm**-1
- 6: 46.85 cm**-1
- 7: 85.91 cm**-1

8:	100.89 cm**-1
9:	108.79 cm**-1
10:	230.03 cm**-1
11:	239.78 cm**-1
12:	297.66 cm**-1
13:	344.41 cm**-1
14:	423.76 cm**-1
15:	437.51 cm**-1
16:	539.32 cm**-1
17:	577.25 cm**-1
18:	637.71 cm**-1
19:	707.22 cm**-1
20:	815.73 cm**-1
21:	823.12 cm**-1
22:	893.31 cm**-1
23:	958.19 cm**-1
24:	994.37 cm**-1
25:	1076.41 cm**-1
26:	1154.50 cm**-1
27:	1190.04 cm**-1
28:	1254.34 cm**-1
29:	1303.78 cm**-1
30:	1336.97 cm**-1
31:	1451.82 cm**-1
32:	1498.48 cm**-1
33:	1636.67 cm**-1
34:	1659.29 cm**-1
35:	3194.15 cm**-1
36:	3195.74 cm**-1
37:	3210.19 cm**-1

38: 3857.63 cm**-1

$Min3(T_1)$

0:	0.00 cm**-1
1:	0.00 cm**-1
2:	0.00 cm**-1
3:	0.00 cm**-1
4:	0.00 cm**-1
5:	0.00 cm**-1
6:	12.38 cm**-1
7:	41.91 cm**-1
8:	71.93 cm**-1
9:	104.60 cm**-1
10:	188.25 cm**-1
11:	250.32 cm**-1
12:	297.53 cm**-1
13:	382.97 cm**-1
14:	431.87 cm**-1
15:	434.44 cm**-1
16:	548.60 cm**-1
17:	600.22 cm**-1
18:	638.29 cm**-1
19:	695.12 cm**-1
20:	825.17 cm**-1
21:	830.92 cm**-1

22:	882.77 cm**-1
23:	971.19 cm**-1
24:	1003.40 cm**-1
25:	1103.40 cm**-1
26:	1163.15 cm**-1
27:	1185.84 cm**-1
28:	1235.95 cm**-1
29:	1307.43 cm**-1
30:	1334.58 cm**-1
31:	1439.55 cm**-1
32:	1515.23 cm**-1
33:	1626.01 cm**-1
34:	1668.18 cm**-1
35:	3206.05 cm**-1
36:	3221.12 cm**-1
37:	3222.52 cm**-1
38:	3856.04 cm**-1

P(S₀)

0:	0.00 cm**-1				
1:	0.00 cm**-1				
2:	0.00 cm**-1				
3:	0.00 cm**-1				
4:	0.00 cm**-1				
5:	0.00 cm**-1				
6:	0.00 cm**-1				
7:	0.00 cm**-1				
8:	15.96 cm**-1				
9:	42.42 cm**-1				
10:	53.11 cm**-1				
11:	231.71 cm**-1				
12:	261.98 cm**-1				
13:	342.45 cm**-1				
14:	393.37 cm**-1				
15:	406.67 cm**-1				
16:	429.24 cm**-1				
17:	469.69 cm**-1				
18:	591.93 cm**-1				
19:	667.33 cm**-1				
20:	700.60 cm**-1				
21:	839.08 cm**-1				
22:	889.06 cm**-1				
23:	944.72 cm**-1				
24:	962.03 cm**-1				
25:	1071.77 cm**-1				
26:	1147.59 cm**-1				
27:	1192.53 cm**-1				
28:	1248.05 cm**-1				
29:	1289.72 cm**-1				
30:	1350.15 cm**-1				
31:	1450.10 cm**-1				
32:	1500.85 cm**-1				
33:	1571.10 cm**-1				
34:	2067.42 cm**-1				
35:	3198.00 cm**-1				

36:	3234.00 cm**-1
37:	3239.55 cm**-1
38:	3869.85 cm**-1

MECI-2(S₁/S₀)

0:	0.00 cm**-1				
1:	0.00 cm**-1				
2:	0.00 cm**-1				
3:	0.00 cm**-1				
4:	0.00 cm**-1				
5:	0.00 cm**-1				
6:	0.00 cm**-1				
7:	52.91 cm**-1				
8:	58.89 cm**-1				
9:	113.39 cm**-1				
10:	162.47 cm**-1				
11:	276.93 cm**-1				
12:	323.85 cm**-1				
13:	358.14 cm**-1				
14:	424.98 cm**-1				
15:	441.52 cm**-1				
16:	469.55 cm**-1				
17:	520.65 cm**-1				
18:	547.56 cm**-1				
19:	680.38 cm**-1				
20:	778.40 cm**-1				
21:	822.98 cm**-1				
22:	875.75 cm**-1				
23:	960.67 cm**-1				
24:	975.45 cm**-1				
25:	1049.80 cm**-1				
26:	1154.62 cm**-1				
27:	1183.22 cm**-1				
28:	1242.42 cm**-1				
29:	1282.53 cm**-1				
30:	1355.19 cm**-1				
31:	1426.64 cm**-1				
32:	1520.94 cm**-1				
33:	1617.85 cm**-1				
34:	1754.34 cm**-1				
35:	3191.29 cm**-1				
36:	3205.97 cm**-1				
37:	3225.25 cm**-1				
38:	3864.08 cm**-1				

	ωB97XD	CAM-B3LYP	PBE0
Min1 (S ₀)	-826.56693	-826.40845	-826.28819
Min2 (S ₁)	-826.42706	-826.27878	-826.16578
$Min3(T_1)$	-826.46504	-826.30473	-826.17330
P (S ₀)	-826.45215	-826.29987	-826.17433
MECI-1 (S_2/S_1)	-826.40494	-826.25879	-826.14983

Table S1. Total energies calculated at the TD-DFT/def2-TZVP + CPCM(benzene) level for energy stationary points involved in the 1,2-dichoro-benzene photolysis.

Table S2. Total energies calculated at the TD-DFT/def2-TZVP + CPCM(benzene) level for energy stationary points involved in the 1,2-di-bromo-benzene photolysis.

	ωB97XD	CAM-B3LYP	PBE0
Min1 (S ₀)	-5379.429	-5379.554	-5378.567
Min2 (S ₁)	-5379.257	-5379.394	-5378.415
$Min3(T_1)$	-5379.303	-5379.427	-5378.429
P (S ₀)	-5379.281	-5379.413	-5378.420
MECI-1 (S_2/S_1)	-5379.229	-5379.370	-5378.391

 Table S3. Total energies calculated at the TD-DFT/def2-TZVP + CPCM(benzene) level for energy stationary points involved in the 1,2-di-iodo-benzene photolysis.

	ωB97XD	CAM-B3LYP	PBE0
Min1 (S ₀)	-1151.48657	-1151.45133	-1150.97990
Min2 (S ₁)	-1151.28534	-1151.26282	-1150.79798
$Min3(T_1)$	-1151.33148	-1151.29875	-1150.81611
P (S ₀)	-1151.30775	-1151.27882	-1150.80260
MECI-1 (S ₂ /S ₁)	-1151.25651	-1151.22823	-1150.76827

	CH ₃	СНО	CN
Min1 (S ₀)	-865.88866	-939.90980	-918.81844
Min2 (S ₁)	-865.74840	-939.77078	-918.68062
$Min3(T_1)$	-865.79036	-939.81111	-918.71982
$\mathbf{P}(\mathbf{S}_0)$	-865.77234	-939.79473	-918.70461
MECI-1 (S_2/S_1)	-865.73700	-939.75161	-918.67156
MECI-2 (S_2/S_1)	-865.72629	-939.74887	-918.65855
	NO_2	OCH ₃	ОН
Min1 (S ₀)	-1031.10876	-941.11033	-901.80907
Min2 (S ₁)	-1030.97093	-940.96898	-901.66954
$Min3(T_1)$	-1031.01007	-941.01022	-901.71125
$\mathbf{P}(\mathbf{S}_0)$	-1030.99349	-940.95811	-901.69107
MECI-1 (S ₂ /S ₁)	-1030.96197	-940.95189	-901.65671
MECI-2 (S ₂ /S ₁)	-1030.94760	-940.94364	-901.64656

Table S4. Total energies calculated at the WB97X/def2-TZVP + CPCM(benzene) level for energy stationary points involved in the 1,2,4 substituted di-iodo-benzenes photolysis.

Figure S1. IRC of substituted 1,2,4-di-iodo benzenes along the FC \rightarrow MECI-1 (S₂/S₁) deactivation process.

Figure S2. IRC of benzyne and phenyl radicals productions from MECI-2. Benzyne forms at S_0 for heaviest functionalized species, while the radical upon deactivation from T_1 .

Min1(S₀)

MECI-1(S₂/S₀)

MECI-2(S₁/S₀)

Figure S3. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4-methyl benzene photolysis.

Basin	Min1	MECI-1	MECI-2	Min2	Min3	Р
V(C1,C2)	3.41	2.95	3.19	2.98	2.84	3.15
V(C1,I1)	1.70	1.17	-	1.58	1.65	-
V(C2,I2)	1.70	1.69	-	-	-	-
V(I1,I2)	-	-	-	-	-	0.82
V(C1)	-	-	1.26	-	-	1.14
V(C2)	-	-	0.89	1.01	1.16	-
V(I1)	-	-	-	-	-	-
V(I2)	-	-	-	-	-	-

Table S5. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-methyl benzene photolysis.

Min1(S₀)

MECI-1(S₂/S₀)

MECI-2(S₁/S₀)

Figure S4. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4-formylbenzene photolysis.

Table S6. Electronic population	ons, e, of monosynaptic	and disynaptic basins	at stationary points featuring the
1,2-di-iodo-4-formylbenzene j	hotolysis.		

Basin	Min1	MECI-1	MECI-2	Min2	Min3	Р
V(C1,C2)	3.40	3.17	2.24	2.96	2.84	4.48
V(C1,I1)	2.64	2.24	1.39	1.69	1.67	-
V(C2,I2)	1.72	1.73	-	-	-	-
V(I1,I2)	-	-	-	-	-	1.00
V(C1)	-	-	-	-	-	-
V(C2)	-	-	1.00	1.05	1.18	0.42
V(I1)	-	-	-	-	-	-
V(I2)	-	-	-	-	-	-

Figure S5. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4-cyanobenzene photolysis.

Basin	Min1	MECI-1	MECI-2	Min2	Min3	Р
V(C1,C2)	3.33	2.82	3.08	2.92	2.83	4.46
V(C1,I1)	1.72	1.67	1.40	1.70	1.68	-
V(C2,I2)	2.07	-	-	-	-	-
V(I1,I2)	-	-	-	-	-	1.00
V(C1)	-	-	-	-	-	0.39
V(C2)	-	1.15	1.01	1.06	1.14	0.46
V(I1)	-	-	-	-	-	-
V(I2)	-	-	-	-	-	-

Table S7. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-cyanobenzene photolysis.

 Min2(S1)
 Min3(T1)
 P(S0)

Figure S6. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4-nitrobenzene photolysis.

Basin	Min1	MECI-1	MECI-2	Min2	Min3	Р
V(C1,C2)	3.33	2.83	3.09	2.91	2.81	4.46
V(C1,I1)	1.92	1.75	1.46	1.70	1.69	-
V(C2,I2)	1.81	-	-	-	-	-
V(I1,I2)	-	-	-	-	-	1.00
V(C1)	-	-	-	-	-	0.39
V(C2)	-	1.16	1.02	1.11	1.14	0.48
V(I1)	-	-	-	2.11	-	-
V(I2)	-	-	-	-	-	-

Table S8. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-nitrobenzene photolysis.

Figure S7. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4-methoxybenzene photolysis.

Table S9. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-methoxybenzene photolysis.

Basin	Min1	MECI-1	MECI-2	Min2	Min3	Р
V(C1,C2)	3.42	2.95	2.68	3.04	2.93	3.53
V(C1,I1)	2.47	1.33	-	-	-	-
V(C2,I2)	1.71	1.51	1.45	1.57	1.64	-
V(I1,I2)	-	-	-	-	-	1.02
V(C1)	-	-	0.98	1.59	1.20	0.75
V(C2)	-	-	-	-	-	0.83
V(I1)	-	-	-	-	-	-
V(I2)	-	-	-	-	-	-

Figure S8. Relevant stationary energy points along the pathway of the 1,2-di-iodo-4-hydoxybenzene photolysis.

Basin	Min1	MECI-1	MECI-2	Min2	Min3	Р
V(C1,C2)	3.43	2.87	3.15	2.92	2.83	3.18
V(C1,I1)	1.70	1.21	1.29	1.59	1.66	-
V(C2,I2)	1.71	1.69	-	-	-	-
V(I1,I2)	-	-	-	-	-	1.06
V(C1)	-	-	-	-	-	0.77
V(C2)	-	-	0.92	1.04	1.14	1.06
V(I1)	-	-	-	-	-	-
V(I2)	-	-	-	-	-	-

Table S10. Electronic populations, e, of monosynaptic and disynaptic basins at stationary points featuring the 1,2-di-iodo-4-hydoxybenzene photolysis.

References

- 55 X. Krokidis, S. Noury and B. Silvi, J Phys Chem A, 1997, 101, 7277–7282.
- 56 A. D. Becke and K. E. Edgecombe, J Chem Phys, 1990, 92, 5397–5403.
- 57 R. F. W. Bader, Atoms in molecules. A Quantum theory, Clarendon Press Oxford, 1ed edn., 1994.
- 58 C. Robinson, Dynamical Systems, CRC Press, 2nd edn., 1999.
- 59 R. Gilmore, in Encyclopedia of Applied Physics, VCH Publisher, 1st edn., 1992, vol. 3.
- 60 R. J. Gillespie and R. S. Nyholm, *Q Rev Chem Soc*, 1957, **11**, 339–380.
- 61 B. Silvi, J Mol Struct, 2002, 614, 3-10.
- 62 A. Savin, B. Silvi and F. Colonna, Can J Chem, 1996, 74, 1088–1096.

63 L. Ayarde-Henríquez, C. Guerra, M. Duque-Noreña, E. Rincón, P. Pérez and E. Chamorro, *Chem Phys Chem*, 2022, 23, e202200343.

64 E. Chamorro, C. Guerra, L. Ayarde-Henríquez, M. Noreña-Duque P. Pérez and E. Rincón, in Chemical Reactivity: Theories and Principles, eds. S. Kayas, L. von Szentpály, G. Serdaroglu and L. Guo, Elsevier, 2023, vol. 1, pp. 465–481.

65 L. Ayarde-Henríquez, C. Guerra, M. Duque-Noreña and E. Chamorro, *Phys Chem Chem Phys*, 2023, **25**, 14274–14284.

66 L. Ayarde-Henríquez, C. Guerra, M. Duque-Noreña and E. Chamorro, New J Chem, 2022, 46, 12002–12009.

67 C. Guerra, L. Ayarde-Henríquez, M. Duque-Noreña and E. Chamorro, *Chem Phys Chem*, 2022, 23, 202200217.

68 C. Guerra, L. Ayarde-Henríquez, Y. A. Rodríguez-Núñez, A. Ensuncho and E. Chamorro, *Chem Phys Chem*, 2023, 24, e202200867.

- 69 J. K. Burdett and T. A. McCormick, J Phys Chem A, 1998, 102, 6366–6372.
- 70 M. Kohout and A. Savin, *J Comput Chem*, 1997, **18**, 1431–1439.
- 71 V. Tsirelson and A. Stash, Chem Phys Lett, 2002, 351, 142–148.
- 72 D. J. Grimwood, I. A. N. Bytheway and D. Jayatilaka, J Comput Chem, 2003, 24, 470–483.