Supplementary Material for

Sulfur-containing polymer/carbon nanotube composite cathode materials for high-energy lithium-sulfur batteries

Shuimiao Wang, Yurui Wu, Ming Yang, Li Sun, Yong Tao*, ChangAn Yang*

College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan Province, PR China.

* Corresponding author.

E-mail addresses: E-mail: Chang_anyang@hnist.edu.cn (C. Yang), ivy_tao0630@hotmail.com (Y. Tao)

Fig. S1. (a) Raman spectra of S, S-TVTCi_4, S-TVTCi_4-CNT$_{10\%}$; (b) XPS survey spectra of S-TVTCi_4-CNT$_{10\%}$; (c) XPS C 1s spectra of S-TVTCi_4-CNT$_{10\%}$; (d) XPS S 2p spectra of S-TVTCi_4-CNT$_{10\%}$
Fig. S2. Proposed molecular structure of S-TVTCSi$_4$

Fig. S3. SEM image of S-TVTCSi$_4$ powder
Fig. S4. SEM image of pure CNT

Fig. S5. Separators of S-TVTC\textsubscript{Si\textsubscript{4}}-based battery and S-based battery after cycling
Fig. S6. Electrolytes soaked the cycled S cathode and cycled S-TVTC\textsubscript{Si\textsubscript{4}} cathode.

Fig. S7. C 1s XPS spectra of S-TVTC\textsubscript{Si\textsubscript{4}} cathode after first cycle.
Fig. S8. Charge-discharge profiles of different batteries at 0.3C

Fig. S9. Charge-discharge profiles of S-TVTC\textsubscript{Si\textsubscript{4}}-CNT\textsubscript{10\%}-based battery at a high C-rate of 1C
Fig. S10. First three cycle CV curves of S-TVTCSi₄-CNT₁₀% -based battery at a scan rate of 0.1 mV s⁻¹