Supporting Information

The temperature-sensitive HA-anchoring supramolecular nanocarriers for targeted delivery of anti-liver cancer drug doxorubicin

Hong-Xia Wang a, Bi-Lian Li a, Jian-Mei Yang a, Jun-Nan He a, Dan-Dan Wang a, Xiao-Qing Liu b, Yan Zhao a,*, Jin Zhang a,*,

a College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
b Shenzhen Kewode Technology Co., Ltd, Shenzhen, China

Corresponding author: College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China. Tel./fax: +86 0871 65941089.

E-mail: zhaoyann@163.com
E-mail: jin@ynnu.edu.cn
Figure S1. Transmittance of natural β-CD, HA, AβCD, β-CD/HA, and AβCD/HA NCs. [β-CD] = 4 µg/mL, [HA] = 12 µg/mL, [AβCD] = 4 µg/mL.

Figure S2. (a) FT-IR of AβCD, HA and AβCD/HA NCs. (b) XRD patterns of AβCD, HA and AβCD/HA NCs.

Figure S3. (a) The UV-Vis spectrum of AβCD/HA NCs remains stationary for 1h to 12 h. (b) The change in transmittance at 450 nm with placement time is obtained from (a), inset: Tyndall effect from 1 h to 12 h.
Figure S4. The DLS (a), Zeta potential (b), and TEM images (c) of AβCD/HA NCs were obtained by keeping AβCD/HA NCs in PBS buffer solution containing KCl of 2.70 mM and NaCl of 137.00 mM with pH of 7.4 for 0, 4, and 7 day.

Figure S5. The stability study of AβCD/HA NCs. The DLS results of AβCD/HA NCs were achieved by immersing AβCD/HA NCs in PBS buffer solution containing KCl and NaCl of 2.70 (a) to 4.05 (b) and 5.40 mM (c), 137.00 (d) to 205.50 (e) and 274.00 mM (f), respectively.
Figure S6. (a) Temperature-responsive properties of AβCD/HA NCs. (a) DLS results of AβCD/HA NCs were achieved by alternating temperature of AβCD/HA NCs solution between 20°C and 37°C. (b) Temperature-responsive cyclicity of AβCD/HA NCs were obtained according to (a). Note: each rising and lowering temperature procedure was adjusted for 30 min.

Figure S7. (a) The UV-Vis spectrum of DOX/AβCD/HA NCs remains stationary for 1 to 7 h. (b) The change in absorbance at 450 nm with placement time is obtained from (a), inset: Tyndall effect from 1 h to 7 h.

Figure S8. The DLS (a), Zeta potential (b), and TEM images (c) of DOX/AβCD/HA NCs were obtained by keeping
DOX/AβCD/HA NCs in PBS buffer solution containing KCl of 2.70 mM and NaCl of 137.00 mM with pH of 7.4 for 0, 4, and 7 day.

Figure S9. The stability study of DOX/AβCD/HA NCs. The DLS results of DOX/AβCD/HA NCs were achieved by immersing DOX/AβCD/HA NCs in PBS buffer solution containing KCl and NaCl of 2.70 (a) to 4.05 (b) and 5.40 mM (c), 137.00 (d) to 205.50 (e) and 274.00 mM (f), respectively.

Figure S10. (a) Temperature-responsive properties of DOX/AβCD/HA NCs. (a) DLS results of DOX/AβCD/HA NCs were achieved by alternating temperature of DOX/AβCD/HA NCs solution between 20°C and 37°C. (b) Temperature-responsive cyclicity of DOX/AβCD/HA NCs were obtained according to (a). Note: each rising and lowing temperature procedure was adjusted for 30 min.