Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

The temperature-sensitive HA-anchoring supramolecular nanocarriers for targeted delivery of anti-liver cancer drug doxorubicin

Hong-Xia Wang ^a, Bi-Lian Li ^a, Jian-Mei Yang ^a, Jun-Nan He ^a, Dan-Dan Wang ^a, Xiao-Qing Liu ^b, Yan Zhao

*^a, Jin Zhang *^a

^aCollege of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China ^bShenzhen Kewode Technology Co., Ltd, Shenzhen, China

Corresponding author: College of Chemistry and Chemical Engineering, Yunnan

Normal University, Kunming, 650500, China. Tel./fax: +86 0871 65941089.

E-mail: zhaooyann@163.com

E-mail: jin@ynnu.edu.cn

Figure S1. Transmittance of natural β -CD, HA, A β CD, β -CD/HA, and A β CD/HA NCs. [β -CD] = 4 μ g/mL, [HA] = 12 μ g/mL, [A β CD] = 4 μ g/mL.

Figure S2. (a) FT-IR of AβCD, HA and AβCD/HA NCs. (b) XRD patterns of AβCD, HA and AβCD/HA NCs.

Figure S3. (a) The UV-Vis spectrum of A β CD/HA NCs remains stationary for 1h to 12 h. (b) The change in transmittance at 450 nm with placement time is obtained from (a), inset: Tyndall effect from 1 h to 12 h.

Figure S4. The DLS (a), Zeta potential (b), and TEM images (c) of AβCD/HA NCs were obtained by keeping AβCD/HA NCs in PBS buffer solution containing KCl of 2.70 mM and NaCl of 137.00 mM with pH of 7.4 for 0, 4, and 7 day.

Figure S5. The stability study of A β CD/HA NCs. The DLS results of A β CD/HA NCs were achieved by immersing A β CD/HA NCs in PBS buffer solution containing KCl and NaCl of 2.70 (a) to 4.05 (b) and 5.40 mM (c), 137.00 (d) to 205.50 (e) and 274.00 mM (f), respectively.

Figure S6. (a) Temperature-responsive properties of $A\beta$ CD/HA NCs. (a) DLS results of $A\beta$ CD/HA NCs were achieved by alternating temperature of $A\beta$ CD/HA NCs solution between 20°C and 37°C. (b) Temperature-responsive cyclicity of $A\beta$ CD/HA NCs were obtained according to (a). Note: each rising and lowing temperature procedure was adjusted for 30 min.

Figure S7. (a) The UV-Vis spectrum of DOX/A β CD/HA NCs remains stationary for 1 to 7 h. (b) The change in absorbance at 450 nm with placement time is obtained from (a), inset: Tyndall effect from 1 h to 7 h.

Figure S8. The DLS (a), Zeta potential (b), and TEM images (c) of DOX/ABCD/HA NCs were obtained by keeping

DOX/A β CD/HA NCs in PBS buffer solution containing KCl of 2.70 mM and NaCl of 137.00 mM with pH of 7.4 for 0, 4, and 7 day.

Figure S9. The stability study of DOX/A β CD/HA NCs. The DLS results of DOX/A β CD/HA NCs were achieved by immersing DOX/A β CD/HA NCs in PBS buffer solution containing KCl and NaCl of 2.70 (a) to 4.05 (b) and 5.40 mM (c), 137.00 (d) to 205.50 (e) and 274.00 mM (f), respectively.

Figure S10. (a) Temperature-responsive properties of DOX/AβCD/HA NCs. (a) DLS results of DOX/AβCD/HA NCs were achieved by alternating temperature of DOX/AβCD/HA NCs solution between 20°C and 37°C. (b) Temperature-responsive cyclicity of DOX/AβCD/HA NCs were obtained according to (a). Note: each rising and lowing temperature procedure was adjusted for 30 min.