Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

For

Highly Selective Solvent Free Catalysis of CO_2 and CS_2 Fixation Under Mild Condition

Using Electronically Varied Zinc Complexes

Souvik Barman^[a], Jayanta Bag^[a], Dhiraj Das^[a, b], and Kuntal Pal*^[a]

Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700 009, India

Contents

Gontonio
Figure S1: ¹ H NMR Spectrum of H_2L^H in DMSO- d_6
Figure S2: ¹³ C NMR Spectrum of H_2L^H in DMSO- d_6
Figure S3: ¹ H NMR Spectrum of H_2L^{OMe} in DMSO- d_6
Figure S4: ¹³ C NMR Spectrum of H_2L^{OMe} in DMSO- d_6
Figure S5: ¹ H NMR Spectrum of H_2L^{NO2} in DMSO- d_6
Figure S6: ¹³ C NMR Spectrum of H_2L^{NO2} in DMSO- d_6
Figure S7: ¹ H NMR Spectrum of $[Zn(L^{H})]$ in DMSO- d_{6}
Figure S8: ¹³ C NMR Spectrum of $[Zn(L^{H})]$ in DMSO- d_6
Figure S9: ¹ H NMR Spectrum of $[Zn(L^{OMe})]$ in DMSO- d_{6}
Figure S10: ¹³ C NMR Spectrum of $[Zn(L^{OMe})]$ in DMSO- d_6
Figure S11: ¹ H NMR Spectrum of $[Zn(L^{NO2})]$ in DMSO- d_6
Figure S12: ¹³ C NMR Spectrum of $[Zn(L^{NO2})]$ in DMSO- d_6
Figure S13: ¹ H NMR Spectrum of $[Zn(L^{H})(DMF)]$ in DMSO- d_{6}
Figure S14: ¹³ C NMR Spectrum of $[Zn(L^{H})(DMF)]$ in DMSO- d_{6}
Figure S15: ¹ H NMR Spectrum of $[Zn(L^{NO2})(DMF)]$ in DMSO- d_6
Figure S16: ¹³ C NMR Spectrum of $[Zn(L^{NO2})(DMF)]$ in DMSO- d_{6}
Figure S17: ¹ H NMR Spectrum of $[Zn(L^{H})Br](Bu_{4}N)$ in DMSO- d_{6}
Figure S18: ¹³ C NMR Spectrum of $[Zn(L^{H})Br](Bu_{4}N)$ in DMSO- d_{6}
Figure S19: ¹ H NMR Spectrum of [Zn(L ^{OMe})Br](Bu ₄ N) in DMSO- <i>d</i> ₆ 14
Figure S20: ¹³ C NMR Spectrum of $[Zn(L^{OMe})Br](Bu_4N)$ in DMSO- d_{6} 14
Figure S21: ¹ H NMR Spectrum of $[Zn(L^{NO2})Br](Bu_4N)$ in DMSO- d_6 15
Figure S22: ¹³ C NMR Spectrum of $[Zn(L^{NO2})Br](Bu_4N)$ in DMSO- d_6 15
Figure S23: ESI-MS spectrum of H_2L^H

Figure S24: ESI-MS spectrum of H ₂ L ^{OMe}	17
Figure S25: ESI-MS spectrum of $H_2 L^{NO2}$	17
Figure S26: ESI-MS Spectrum of [Zn(L ^H)].	18
Figure S27: ESI-MS Spectrum of [Zn(L ^{OMe})]	18
Figure S28: ESI-MS Spectrum of [Zn(L ^{NO2})]	19
Figure S29: ESI-MS Spectrum of [Zn(L ^H)(DMF)]	20
Figure S30: ESI-MS Spectrum of [Zn(L ^{NO2})(DMF)]	21
Figure S31: ESI-MS Spectrum of [Zn(L ^H)Br](Bu ₄ N)	22
Figure S32: ESI-MS Spectrum of [Zn(L ^{OMe})Br](Bu ₄ N)	22
Figure S33: ESI-MS Spectrum of [Zn(L ^{NO2})Br](Bu ₄ N)	23
Figure S34: FT-IR spectrum of H ₂ L ^H .	24
Figure S35: FT-IR spectrum of H ₂ L ^{OMe}	24
Figure S36: FT-IR spectrum of H ₂ L ^{NO2}	25
Figure S37: FT-IR Spectrum of [Zn(L ^H)].	25
Figure S38: FT-IR Spectrum of [Zn(L ^{OMe})]	26
Figure S39: FT-IR Spectrum of [Zn(L ^{NO2})]	26
Figure S40: FT-IR Spectrum of [Zn(L ^H)(DMF)].	27
Figure S41: FT-IR Spectrum of [Zn(L ^{NO2})(DMF)]	27
Figure S42: FT-IR Spectrum of [Zn(L ^H)Br](Bu ₄ N)	28
Figure S43: FT-IR Spectrum of [Zn(L ^{OMe})Br](Bu ₄ N).	28
Figure S44: FT-IR Spectrum of [Zn(L ^{NO2})Br](Bu ₄ N)	29
Figure S45: Electronic absorption spectra of H_2L^H (1 x 10 ⁻⁵ (M) in CH ₃ CN).	29
Figure S46: Electronic absorption spectra of H_2L^{OMe} (5 x 10 ⁻⁵⁽ M) in CH ₃ CN).	30
Figure S47: Electronic absorption spectra of H_2L^{NO2} (5 x 10 ⁻⁵ (M) in CH ₃ CN)	30
Figure S48: Electronic absorption spectra of $[Zn(L^{H})]$ (1 x 10 ⁻⁵ (M) in DMF).	31
Figure S49: Electronic absorption spectra of [Zn(L ^{OMe})] (1 x 10 ⁻⁵ (M) in DMF)	31
Figure S50: Electronic absorption spectra of $[Zn(L^{NO2})]$ (1 x 10 ⁻⁵ (M) in CH ₃ CN).	32
Figure S51: Electronic absorption spectra of $[Zn(L^{H})(DMF)]$ (1 x 10 ⁻⁵ (M) in CH ₃ CN)	32
Figure S52: Electronic absorption spectra of $[Zn(L^{NO2})(DMF)]$ (1 x 10 ⁻⁵ (M) in DMF).	33
Figure S53: Electronic absorption spectra of [Zn(L ^H)Br](Bu ₄ N) (5 x 10 ⁻⁵ (M) in CH ₃ CN)	33
Figure S54: Electronic absorption spectra of [Zn(L ^{OMe})Br](Bu ₄ N) (1 x 10 ⁻⁵⁽ M) in CH ₃ CN)	34
Figure S55: Electronic absorption spectra of [Zn(L ^{NO2})Br](Bu ₄ N) (1 x 10 ⁻⁵⁽ M) in CH ₃ CN)	34

Figure S56: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ([Zn(L^{H})]: 1 mol%, TBAB: 10 mol%) showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (19% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]...35

Figure S56a: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs (TBAB: 10 mol%) without catalyst showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (7% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].....36

Figure S57: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ([Zn(L^H)]: 2 mol%, TBAB: 10 mol%) showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (23% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]...36

Figure S57a: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ([Zn(L^{H})]: 5 mol%, TBAB: 5 mol%) showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (33% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]...37

Figure S58: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ([Zn(L^{H})]: 5 mol%, TBAB: 10 mol%) showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (41% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]...38

Figure S59: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ([Zn(L^{H})]: 5 mol%, TBAB: 20 mol%) showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (74% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]...39

Figure S61: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ([Zn(L^{NO2})]: 5 mol%, TBAB: 20 mol%) showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (70% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]...41

Figure S62: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ([Zn(L^{OMe})]: 5 mol%, TBAB: 20 mol%) showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (35% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]...42

Figure S67: ¹ H NMR in CDCl ₃ obtained for a reaction mixture taken after 48 hrs ([Zn(L^{H})]: 5 mol%, TBAB: 20 mol%, CS ₂ : 0.3 mL) showing two different products [* indicates Tetrabutyl ammonium
bromide (TBAB) peaks]
Figure S68: ¹ H NMR in CDCl ₃ obtained for a reaction mixture taken after 24 hrs ($[Zn(L^{NO2})]$: 5 mol%, TBAB: 20 mol%, CS ₂ : 0.3 mL) showing three different products and three peaks associated to styrene oxide starting material [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]
Figure S69: ¹ H NMR in CDCl ₃ obtained for a reaction mixture taken after 48 hrs ([Zn(L ^{NO2})]: 5 mol%, TBAB: 20 mol%, CS ₂ : 0.3 mL) showing three different products [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]
Figure S70: ¹ H NMR in CDCl ₃ obtained for a reaction mixture taken after 24 hrs ([Zn(L ^{OMe})]: 5 mol%, TBAB: 20 mol%, CS ₂ : 0.3 mL) showing three different products and three peaks associated to styrene oxide starting material [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]
Figure S71: ¹ H NMR in CDCl ₃ obtained for a reaction mixture taken after 48 hrs ([Zn(L ^{OMe})]: 5 mol%, TBAB: 20 mol%, CS ₂ : 0.3 mL) showing two different products and three peaks associated to styrene oxide starting material [* indicates Tetrabutyl ammonium bromide (TBAB) peaks]
Figure S72: ¹ H NMR spectrum of 4-Phenyl-1,3-dithiolane-2-thione in CDCl ₃
Figure S73: ¹³ C NMR spectrum of 4-Phenyl-1,3-dithiolane-2-thione in CDCl ₃
Figure S74: ¹ H NMR spectrum of 5-phenyl-1,3-oxathiolane-2-thione and 4-phenyl-1,3-oxathiolane-2-thione in CDCl ₃
Figure S75: ¹³ C NMR spectrum of 5-phenyl-1,3-oxathiolane-2-thione and 4-phenyl-1,3-oxathiolane-2-thione in CDCl ₃
Figure S76: Carbonyl region of ¹³ C NMR spectrum of cyclohexane carbonate synthesized using Zn-1 ^H (Table 5, Reaction 2)
Figure S77: Comparison between the ¹ H NMR spectra of complex 1^{H} (bottom), 1^{H} in the presence of 4 equiv. TBAB (Middle) and 1^{H} in the presence of 4 equiv. TBAB and 12 eq. SO (Top) in DMSO-d ₆ (δ H 2.50 ppm)
Figure S78: ¹ H NMR spectrum of Zn-1 ^H /TBAB (1:4) added styrene oxide (SO) and CS ₂ at 22 ⁰ C, NMR taken after 1 h. interval in DMSO- d_6
Figure S79: FT-IR spectrum of cyclic cyclohexane carbonate CHO(<i>cis</i>) synthesized using Zn-1 ^H as catalyst(Table 5, Reaction 2)
Table S1: Crystallographic data parameters. 53
Table S2: Comparison of cyclic CHC formation by the reaction of CHO and CO ₂ using Zn complex as a catalyst
Table S3: Important references related to the selective cyclic carbonate formation by the reaction of CO2 cycloaddition to epoxide. 55
Table S4: Important references related to the selective cyclic thio-carbonate formation by the reaction of CS ₂ cycloaddition to epoxide
Note on the Crystal structure analysis for H_2L^{NO2} :

Figure S1: ¹H NMR Spectrum of H_2L^H in DMSO- d_6 .

Figure S2: ¹³C NMR Spectrum of H_2L^H in DMSO- d_6 .

Figure S3: ¹H NMR Spectrum of H_2L^{OMe} in DMSO- $d_{6.}$

Figure S4: ¹³C NMR Spectrum of H_2L^{OMe} in DMSO- d_6 .

Figure S5: ¹H NMR Spectrum of H_2L^{NO2} in DMSO- d_6 .

Figure S7: ¹H NMR Spectrum of $[Zn(L^{H})]$ in DMSO- d_6 .

Figure S8: ¹³C NMR Spectrum of $[Zn(L^{H})]$ in DMSO- d_6 .

Figure S9: ¹H NMR Spectrum of $[Zn(L^{OMe})]$ in DMSO- d_{6} .

Figure S10: ¹³C NMR Spectrum of $[Zn(L^{OMe})]$ in DMSO- d_6 .

Figure S11: ¹H NMR Spectrum of $[Zn(L^{NO2})]$ in DMSO- d_6 .

Figure S12: ¹³C NMR Spectrum of $[Zn(L^{NO2})]$ in DMSO- d_6 .

Figure S13: ¹H NMR Spectrum of $[Zn(L^{H})(DMF)]$ in DMSO- d_6 .

Figure S14: ¹³C NMR Spectrum of $[Zn(L^{H})(DMF)]$ in DMSO- d_6 .

Figure S15: ¹H NMR Spectrum of $[Zn(L^{NO2})(DMF)]$ in DMSO- d_6 .

Figure S16: ¹³C NMR Spectrum of $[Zn(L^{NO2})(DMF)]$ in DMSO- $d_{6.}$

Figure S17: ¹H NMR Spectrum of [Zn(L^H)Br](Bu₄N) in DMSO-*d*₆.

Figure S18: ¹³C NMR Spectrum of [Zn(L^H)Br](Bu₄N) in DMSO-*d*₆.

Figure S19: ¹H NMR Spectrum of [Zn(L^{OMe})Br](Bu₄N) in DMSO-*d*₆.

Figure S20: ¹³C NMR Spectrum of [Zn(L^{OMe})Br](Bu₄N) in DMSO-*d*₆.

Figure S21: ¹H NMR Spectrum of [Zn(L^{NO2})Br](Bu₄N) in DMSO-*d*₆.

Figure S22: ¹³C NMR Spectrum of $[Zn(L^{NO2})Br](Bu_4N)$ in DMSO- d_6 .

Figure S23: ESI-MS spectrum of H_2L^H .

Figure S24: ESI-MS spectrum of H_2L^{OMe} .

Figure S25: ESI-MS spectrum of H_2L^{NO2} .

Figure S26: ESI-MS Spectrum of [Zn(L^H)].

Figure S27: ESI-MS Spectrum of [Zn(L^{OMe})].

Figure S28: ESI-MS Spectrum of [Zn(L^{NO2})].

Figure S29: ESI-MS Spectrum of [Zn(L^H)(DMF)].

Figure S30: ESI-MS Spectrum of [Zn(L^{NO2})(DMF)].

Figure S31: ESI-MS Spectrum of [Zn(L^H)Br](Bu₄N).

Figure S32: ESI-MS Spectrum of [Zn(L^{OMe})Br](Bu₄N).

Figure S33: ESI-MS Spectrum of [Zn(L^{NO2})Br](Bu₄N).

Figure S34: FT-IR spectrum of H_2L^H .

Figure S35: FT-IR spectrum of H_2L^{OMe} .

Figure S36: FT-IR spectrum of H_2L^{NO2} .

Figure S37: FT-IR Spectrum of [Zn(L^H)].

Figure S38: FT-IR Spectrum of [Zn(L^{OMe})].

Figure S39: FT-IR Spectrum of [Zn(L^{NO2})].

Figure S40: FT-IR Spectrum of [Zn(L^H)(DMF)].

Figure S41: FT-IR Spectrum of [Zn(L^{NO2})(DMF)].

Figure S42: FT-IR Spectrum of [Zn(L^H)Br](Bu₄N).

Figure S43: FT-IR Spectrum of [Zn(L^{OMe})Br](Bu₄N).

Figure S44: FT-IR Spectrum of $[Zn(L^{NO2})Br](Bu_4N)$.

Figure S45: Electronic absorption spectra of H_2L^H (1 x 10⁻⁵(M) in CH₃CN).

Figure S46: Electronic absorption spectra of H_2L^{OMe} (5 x 10⁻⁵⁽M) in CH₃CN).

Figure S47: Electronic absorption spectra of H_2L^{NO2} (5 x 10⁻⁵(M) in CH₃CN).

Figure S48: Electronic absorption spectra of $[Zn(L^{H})]$ (1 x 10⁻⁵(M) in DMF).

Figure S49: Electronic absorption spectra of $[Zn(L^{OMe})]$ (1 x 10⁻⁵(M) in DMF).

Figure S50: Electronic absorption spectra of $[Zn(L^{NO2})]$ (1 x 10⁻⁵(M) in CH₃CN).

Figure S51: Electronic absorption spectra of $[Zn(L^{H})(DMF)]$ (1 x 10⁻⁵(M) in CH₃CN).

Figure S52: Electronic absorption spectra of $[Zn(L^{NO2})(DMF)]$ (1 x 10⁻⁵(M) in DMF).

Figure S53: Electronic absorption spectra of $[Zn(L^{H})Br](Bu_{4}N)$ (5 x 10⁻⁵⁽M) in CH₃CN).

Figure S54: Electronic absorption spectra of $[Zn(L^{OMe})Br](Bu_4N)$ (1 x 10⁻⁵⁽M) in CH₃CN).

Figure S55: Electronic absorption spectra of [Zn(L^{NO2})Br](Bu₄N) (1 x 10⁻⁵⁽M) in CH₃CN).

Figure S56: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs $([Zn(L^{H})]: 1 \text{ mol}\%, \text{TBAB}: 10 \text{ mol}\%)$ showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (19% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S56a: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs (TBAB: 10 mol%) without catalyst showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (7% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S57: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs $([Zn(L^{H})]: 2 \text{ mol}\%, \text{TBAB}: 10 \text{ mol}\%)$ showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (23% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S57a: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ($[Zn(L^{H})]$: 5 mol%, TBAB: 5 mol%) showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (33% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S58: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs $([Zn(L^{H})]: 5 \text{ mol}\%, \text{TBAB}: 10 \text{ mol}\%)$ showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (41% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S59: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs $([Zn(L^{H})]: 5 \text{ mol}\%, \text{TBAB}: 20 \text{ mol}\%)$ showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (74% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S60: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 48 hrs $([Zn(L^{H})]: 5 \text{ mol}\%, \text{TBAB: 20 mol}\%)$ showing three peaks of styrene carbonate (>99% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S61: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs $([Zn(L^{NO2})]: 5 \text{ mol}\%, \text{TBAB: 20 mol}\%)$ showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (70% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S62: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs $([Zn(L^{OMe})]: 5 \text{ mol}\%, \text{TBAB: 20 mol}\%)$ showing three peaks of styrene carbonate and three peaks associated to styrene oxide starting material (35% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S63: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs ($[Zn(L^{H})]$: 5 mol%, TBAB: 20 mol%) showing product peaks of cyclohexane carbonate (CHC) (>99% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S64: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs $([Zn(L^{NO2})]: 5 \text{ mol}\%, \text{TBAB: 20 mol}\%)$ showing product peaks of cyclohexane carbonate (CHC) (>99% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S65: ¹H NMR Spectrum in CDCl₃ obtained for a reaction mixture taken after 24 hrs $([Zn(L^{OMe})]: 5 \text{ mol}\%, \text{TBAB}: 20 \text{ mol}\%)$ showing product peaks of cyclohexane carbonate (CHC) (>99% conversion) [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S66: ¹H NMR in CDCl₃ obtained for a reaction mixture taken after 24 hrs ($[Zn(L^{H})]$: 5 mol%, TBAB: 20 mol%, CS₂: 0.3 mL) showing three different products and three peaks associated to styrene oxide starting material [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S67: ¹H NMR in CDCl₃ obtained for a reaction mixture taken after 48 hrs ([Zn(L^{H})]: 5 mol%, TBAB: 20 mol%, CS₂: 0.3 mL) showing two different products [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S68: ¹H NMR in CDCl₃ obtained for a reaction mixture taken after 24 hrs ($[Zn(L^{NO2})]$: 5 mol%, TBAB: 20 mol%, CS₂: 0.3 mL) showing three different products and three peaks associated to styrene oxide starting material [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S69: ¹H NMR in CDCl₃ obtained for a reaction mixture taken after 48 hrs ($[Zn(L^{NO2})]$: 5 mol%, TBAB: 20 mol%, CS₂: 0.3 mL) showing three different products [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S70: ¹H NMR in CDCl₃ obtained for a reaction mixture taken after 24 hrs ($[Zn(L^{OMe})]$: 5 mol%, TBAB: 20 mol%, CS₂: 0.3 mL) showing three different products and three peaks associated to styrene oxide starting material [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S71: ¹H NMR in CDCl₃ obtained for a reaction mixture taken after 48 hrs ($[Zn(L^{OMe})]$: 5 mol%, TBAB: 20 mol%, CS₂: 0.3 mL) showing two different products and three peaks associated to styrene oxide starting material [* indicates Tetrabutyl ammonium bromide (TBAB) peaks].

Figure S72: ¹H NMR spectrum of 4-Phenyl-1,3-dithiolane-2-thione in CDCl_{3.}

Figure S73: ¹³C NMR spectrum of 4-Phenyl-1,3-dithiolane-2-thione in CDCl_{3.}

Figure S74: ¹H NMR spectrum of 5-phenyl-1,3-oxathiolane-2-thione and 4-phenyl-1,3-oxathiolane-2-thione in $CDCl_3$.

Figure S75: ¹³C NMR spectrum of 5-phenyl-1,3-oxathiolane-2-thione and 4-phenyl-1,3-oxathiolane-2-thione in $CDCl_3$

Figure S76: Carbonyl region of ¹³C NMR spectrum of cyclohexane carbonate synthesized using **Zn-1**^H (Table 5, Reaction 2).

Figure S77: Comparison between the ¹H NMR spectra of complex $\mathbf{1}^{H}$ (bottom), $\mathbf{1}^{H}$ in the presence of 4 equiv. TBAB (Middle) and $\mathbf{1}^{H}$ in the presence of 4 equiv. TBAB and 12 eq. SO (Top) in DMSO-d₆ (δ H 2.50 ppm).

Figure S78: ¹H NMR spectrum of **Zn-1^H**/TBAB (1:4) added styrene oxide (SO) and CS₂ at 22⁰C, NMR taken after 1 h. interval in DMSO- d_{6} .

Figure S79: FT-IR spectrum of cyclic cyclohexane carbonate CHO(cis) synthesized using $Zn-1^{H}$ as catalyst(Table 5, Reaction 2).

Identification code	H_2L^{NO2}	2 ^H	2 ^{NO2}	3 ^{OMe}
Empirical formula	$C_{17}H_{12}N_6O_3$	$C_{20}H_{18}N_6O_2Zn$	$C_{20}H_{17}N_7O_4Zn$	C34H49BrN6O2Zn
Formula weight	348.33	439.77	484.77	719.07
Temperature/K	296.15	273.15	168.24	144.99
Crystal system	triclinic	triclinic	monoclinic	triclinic
Space group	P-1	P-1	$P2_1/n$	P-1
a/Å	7.042(3)	9.322(2)	11.121(2)	8.5801(9)
b/Å	9.685(4)	10.874(3)	13.472(2)	11.9385(12)
c/Å	12.244(6)	11.037(3)	13.589(3)	18.0760(17)
α/°	85.324(9)	109.988(4)	90	91.339(3)

Table S1: Crystallographic data parameters.

β/°	81.659(9)	101.284(4)	95.903(6)	97.549(4)
γ/°	84.984(9)	101.409(4)	90	107.975(3)
Volume/Å ³	821.1(6)	987.7(4)	2025.1(6)	1741.9(3)
Ζ	1	2	4	2
$\rho_{calc}g/cm^3$	1.409	1.479	1.590	1.371
μ/mm^{-1}	0.106	1.272	1.258	1.890
F(000)	360.2	452.0	992.0	752.0
Crystal size/mm ³	$0.1 \times 0.09 \times 0.07$	$0.22\times 0.15\times 0.11$	$0.2 \times 0.18 \times 0.1$	$0.25 \times 0.15 \times 0.11$
Radiation	Μο Κα	ΜοΚα	ΜοΚα	ΜοΚα
	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$	$(\lambda = 0.71073)$
2\O range /°	3.37 to 50.116	4.098 to 54.386	4.512 to 50.37	5.224 to 69.326
Index ranges	$-8 \le h \le 8,$	$-11 \le h \le 11$	$-13 \le h \le 13$	$-13 \le h \le 13$
	$-11 \le k \le 11,$	$-13 \le k \le 13$	$-16 \le k \le 14$	$-17 \le k \le 18$
	$-14 \le l \le 14$	$-14 \le l \le 14$	$-16 \le l \le 16$	$-28 \le l \le 28$
Reflections	14070	20163	18374	26079
collected		20105	10574	20079
Independent	2879	4350	3598	12057
reflections	[Rint = 0.119],	$[R_{int} = 0.0424,$	$[R_{int} = 0.0772,$	$[R_{int} = 0.1085,$
	Rsigma = 0.1018	$R_{sigma} = 0.0345$	$R_{sigma} = 0.0590]$	$R_{sigma} = 0.0918$
Data/restraints/ parameters	2879/0/248	4350/0/265	3598/0/291	12057/0/402
Goodness-of-fit on F^2	1.021	1.036	1.073	1.014
Final R indexes	R1 = 0.0628,	$R_1 = 0.0334,$	$R_1 = 0.0459$	$R_1 = 0.0510,$
[I>=2σ (I)]	wR2 = 0.1325	$wR_2 = 0.0778$	$wR_2 = 0.1134$	$wR_2 = 0.1337$
Final R indexes	R1 = 0.1564,	$R_1 = 0.0466,$	$R_1 = 0.0753$	$R_1 = 0.0690,$
[all data]	wR2 = 0.1731	$wR_2 = 0.0847$	$wR_2 = 0.1388$	$wR_2 = 0.1428$
Largest diff. peak/ hole / e Å ⁻³	0.27/-0.32	0.61/-0.41	0.59/-0.83	1.05/-1.12

Table S2: Comparison of cyclic CHC formation b	y the reaction o	of CHO and	CO ₂ using Zn
complex as a catalyst			

Entry	Zn Catalyst (mol%)	Co- catalyst (mol%)	Condition	Yield % (Cyclic CHC)	Reference(suggestedbyreviewer)(I.F=Impact Factor)	Remark
1.	5	TBAB (5)	T = 50° C, time = 24 h, P _{CO2} = 10 bar	90	Dalton Trans., 2019, 48, 10733–10742. (I.F=4.569)	High P and High Yield
2.	0.1	None	T = 120° C, time = 32 h, P _{CO2} = 1.7 MPa	90	Chem. – Eur. J., 2016, 22, 6556–6563. (I.F=5.02)	High T and high P and High Yield
3.	0.5	TBAB (0.5)	T = 70° C, time = 18 h, P _{CO2} = 10 bar	93	Dalton Trans., 2023, 52, 6105-6116. (I.F=4.569)	High P and High Yield
4.	0.5 wt% of CHO	None	$T = 100^{\circ}C$, time = 4 h, P _{CO2} = 3	17	Dalton Trans., 2020, 49, 312-321.	High T and High P, poor

			MPa		(I.F=4.569)	yield
5.	0.14	TBAB	$T = 80^{\circ}C$, time	27 (cis :	J. CO ₂ Util., 2016, 14,	High T and
		(0.2)	= 24 h, P_{CO2} =	trans =	10–22. (I.F=8.321)	high P. poor
			50 bar	9:1)		yield
6.	1	TBAI(1)	$T = 100^{\circ}C$, time	34	Green Chem., 2016,	High T and
			$= 12$ h, $P_{CO2} = 5$		18, 226–231.	high P. poor
			MPa		(I.F=11.034)	yield
7.	0.04	TBAB	$T = 100^{\circ}C$, time	27	Polyhedron, 2019,	High T and
		(0.4)	$= 3 h, P_{CO2} = 30$		173, 114134.	high P. poor
			bar			yield
8.	0.3	TBAB	$T = 100^{\circ}C$, time	14	J. Mol. Catal. A:	High T, poor
		(0.6)	= 16 h, P _{CO2} $=$		Chem., 2016, 420,	yield
			0.1 MPa		208–215. (I.F=5.089)	
9.	0.13	TBAB	$T = 80^{\circ}C$, time	28	Molecular Catalysis,	High T and
		(0.2)	$= 3 h, P_{CO2} = 20$		2023, 538, 112992.	high P. poor
			bar		(I.F=5.089)	yield
10.	0.2	TBAB	$T = 80^{\circ}C$, time	10	J. Mol. Catal. A:	High P. poor
		(0.2)	= 20 h, P _{CO2} $=$		Chem., 2015, 400,	yield
			50 bar		104-110. (I.F=5.089)	
11.	5	TBAB	$T = 70^{\circ}C$, time	>99	Present work	-
		(20)	$= 24$ h, $P_{CO2} = 1$			
			bar			

Table S3: Important references related to the selective cyclic carbonate formation by the reaction of CO_2 cycloaddition to epoxide.

Entry	Zn Catalyst (mol%)	Co- catalyst (mol%)	Condition	Yield %	TOF (h ⁻¹)	Reference(suggestedbyreviewer)(I.F=ImpactFactor)
1.	0.1	None	$T = 120^{\circ}C,$ time = 32 h, $P_{CO2} = 1.7$ MPa	90 (Cyclic CHC)	-	Chem. – Eur. J., 2016, 22, 6556– 6563. (I.F=5.02)
2.	0.5	TBAI (2)	$T = 100^{\circ}C,$ time = 24 h, $P_{CO2} = 1$ bar	76 (Cyclic CHC)	6.12	Catalysis Today, 2021, 375, 324-33. (I.F=6.562)
3.	2 (Hydrogen Bond Donor)	TBAB (4)	$T = RT, time = 23 h, P_{CO2} = 1 bar$	35(Epichlorohydrin = ECH)	1.89	Advanced Synthesis & Catalysis, 2019, 361, 366-373.
4.	$\begin{array}{rl} 0.2 & (cata & = \\ ZnCl_2) \end{array}$	TBAI (0.8)	$T = RT, time = 24 h, P_{CO2} = 1 bar$	27 (SO)	6	Chem. Ber. 1986, 119, 1090–1094.

5.	5	TBAB	$T = 70^{\circ}C$, time	>99	0.83	Present work
		(20)	= 24 h, P _{CO2} =	(Cyclic CHC)		
			1 bar	-		

Table S4: Important references related to the selective cyclic thio-carbonate formation by the reaction of CS_2 cycloaddition to epoxide.

Catalyst	Substrate	Product	Yield	Selectivity	Condition	Reference
DBU	CS ₂ +Differ	Cyclic +	3.8	(70)	T= 120 °C.	Macromolecules.
TBD	ent	polymer+ COS	4.4		Time= $12h$	2020 , <i>53</i> , 1, 233–239.
DBN	epoxides	1.2.2	3.2			
MTBD			3.7		1	
DMAP			0			
Hollow	SO+CS ₂	Cyclic	20		$T = 25^{\circ}C$,	Journal of the Taiwan
CoAl ₂ O ₄					Time= 3h	Institute of Chemical
			50		$T = 50^{\circ}C$,	Engineers, 2020 , 1-13.
					Time= 3h	
						-
			85		$T = 70^{\circ}C,$	
					1 me = 3 h	
			06		$T = 0.0^{0}C$	-
			90		I = 90 C, Time= 3h	
					Time= 51	
N-heterocyclic	ⁿ BuO+CS ₂	S S		60:23	$T = 40^{\circ}C$,	Tetrahedron, 2017, 73,
carbene/LiCl(B	2				Time= 24 h.	5706e5714.
r)						
		n-Bu n-Bu		46:0		
				88:8		
$Me_2N-C_3H_6-$	$EtO+CS_2$	Four different	99	18:80	T= 100 °C,	Ind. Eng. Chem. Res.,
MS-1		cyclic products			Time= 6 h	2018 , <i>57</i> , 3, 891–896.
		Et Et				
T.op			00.00		T 25.0C	O D' Charles
LIOBU	$CS_2+Differ$		80-90		I = 25 °C, Time 5 h	Org. Biomol. Chem.,
	ent				1 line = 5 li,	2010, 14, 7480-7489.
	epoxides				solvent nee	
		Ro ^{ss} P				
		12^{12} K_1 (17)				
		entries)				
	E.O. CC		11			
$[HO(CH_2)_2PBu]$	$EtO+CS_2$		11	0	T = RT, Time=	ChemCatChem, 2016,
	4		21	76	- ^{S n}	0, 2027 - 2030.
Lidf LiOtD11 LiD22	4	$\backslash _/$	21	/0	4	
LIU DU, LIBT	4		99	01		
LIUBU	1	ן בו	77	/0	1	

Asymmetric bis-Schiff-base Zn(II) complex	CHO+ CS ₂	Polymer+ Cyclic	83 20 17 2 47 40		T= 80 ⁰ C, Time= 8 h	Inorganic Chemistry Communications, 2015 , <i>55</i> , 132–134.
Potassium ethyl xanthogenate : Epoxide (1:1)	CHO+CS ₂	S S S S S	100		T= 35 [°] C, Time= 12h, EtOH	ARKIVOC, 2014 , 16- 41.
			100		$T=35^{0}C,$ Time= 12h, MeOH	
Binary Lewis acid– Lewis base	CS ₂ +Differ ent epoxides	Three different products	11		$T=60^{0}C,$ $Time=12h$	Appl. Organomet. Chem., 2012 , <i>26</i> , 614– 618.
catalyst			22		$T=60^{0}C,$ Time= 10h	
Bimetallic Aluminum(sale n) Complex (5 mol%)	PO+CS ₂		95	5:95	$T=90^{0}C,$ Time= 16 h	J. Org. Chem., 2010 , 75, 6201–6207.
			59	71:29		
Aluminium(sale n) catalyst	PO+CS ₂	\circ $S + S S$	95		T=90 ⁰ C, Time=16h	Synlett, 2010 , No. 4, 623–627
Ti catalyst		S + S	100		$T=90^{0}C,$ $Time=24 h$	ChemCatChem, 2014 , <i>6</i> , 1252-1259.
(Salen)CrCl	CHO+CS ₂		40.6		T=40 ^o C, Time=4h	Dalton Trans., 2009 , 8891–8899.

			61.4		$T = 50^{\circ}C$.	
					Time=4h	
			67.7		$T = 60^{\circ}C$,	
					Time=4h	
Zn-Co ^{III} DMCC	PO+CS ₂	Polymer	94.6		$T = 100^{\circ}C$,	Macromolecules,
	2				Time= 6h	2008 , <i>41</i> , 1587-1590.
						, ,
Hydrotalcite	SO+CS ₂	S S	83	62:38	$T = 50^{\circ}C$,	SYNTHESIS, 2008,
MG30	_				Time= 5h	1, 0053–0056.
(Heterogeneous						
catalysis)						
Hydrotalcite		S	84	99	$T = 50^{0}C$,	
MG30					Time= 3h	
Hydrotalcite		0´`ş	67	98		
MG70						
Alumina		PhO—	21	98		
MgO			16	99		
MgO/alumina			33	98		
(30:70)						
Hydrotalcite		No reaction			Room temp	
MG30					-	
Hydrotalcite	SO+CS ₂	S			$T = 100^{\circ}C$,	
MG30	_				Time= 5h	
		s´`s				
		Ph				
NaH (10 mol%)	SO+CS ₂	S	95		MeOH	SYNLETT, 2008, 6,
		L L				0889-0891.
		o´`s				
		Ph				
NaOH (10		S	95		MeOH	
mol%)		l I	20			
11101/0)		0 [~] s				
Ti catalvet	POLCS		Quant		$T - 120^{0}C$	Tetrahedron 2001 57
11 catalyst	r_0+c_{2}		Quant		1 = 120 C, Time = 48h	7140 7152
			auve		11110-4011	/149-/132.
		' 				
Et ₂ N		S S	4		$T = 100^{\circ}C$	Bull Chem Soc Inn
,		I I I			Time= $20h$	1988. <i>61</i> , 921-925.
		O' S + S' S'			$CS_{2} = 0.1 MPa$,,
		$ \rightarrow \rightarrow \rightarrow$			u	
Et ₃ N		1	76	68:8	$T = 100^{\circ}C$,	
		-		÷		

					$\begin{array}{l} \text{Time= 20h} \\ \text{CS}_2 = 800 \\ \text{MPa} \end{array}$	
N,N- Dimethylethyla mine			85	67:18	$T=100^{0}C,$ Time= 20h CS ₂ = 800MPa	
Pyridine			92	88:4	$T = 100^{0}C,$ Time = 20h $CS_{2} = 800$ MPa	
NaI		Five different products	66		T= RT, Time = 24h	J. Org. Chem., 1996 , 60, 473-475.
LiI			75		T = RT,	
LiBr			71		Time $= 2h$	
LiCl			53			
Diethylzinc- Electron- Donor Catalyst	PO+CS ₂	Polymer	7.5		$T = 25^{\circ}C$, Time = 26.5h	JOURNAL OF POLYMER SCIENCE, 1977 , <i>15</i> , 937-944.

Note on the Crystal structure analysis for H₂L^{NO2}:

Although, the structure of this ligand molecule is quite flexible compare to metal complexes. Because of that it was always difficult to obtain a good quality crystal. However, after several attempts, fortunately a suitable crystal for x-ray diffraction was obtained. After analyzing the image spot intensity, we have chosen an exposure of 10 seconds with a scan width of 2 degree where both of image below explain the resolution.

