Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

An electrospinning strategy to fabricate integrated electrode with multiple components for highly efficient electrocatalytic water splitting

Jian Cai, Jiace Hao, Shuanglong Lu, Fang Duan, Mingliang Du, Han Zhu* Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China E-mail: zhysw@jiangnan.edu.cn

Experimental section

Materials

Copper chloride (CuCl₂), cobalt chloride hexahydrate (CoCl₂·6H₂O), manganous acetate (Mn(CH₃COO)₂) were purchased from Aladdin Co., Ltd. Sulfuric acid (H₂SO₄), potassium hydroxide (KOH) and dimethylformamide (DMF, 99.5%) were supplied by Shanghai Civi Chemical Technology Co., Ltd. Polyacrylonitrile (PAN, M \approx 1.4×10⁵, copolymerized with 10 wt% methyl acrylate) was manufactured by Sinopec Shanghai Petrochemical Co., Ltd. Ultrapure water (Milli-Q) was used in all experiments. All of the reagents were used without purification.

Preparation of CuCoMn salt/PAN precursor nanofibers

First, 3g PAN power were dissolved in 22g DMF to form a homogeneous solution under stirring for 2h. Then, 0.15g CuCl₂, 0.15g CoCl₂ and 0.15g Mn(CH₃COO)₂ were added in the above mixture under stirring for 2h. After that, the prepared mixture was transferred into a syringe, equipping on the injection pump. The speed of the injection was 0.6 mL/h, and the voltage applied was fixed at 16 kV. Under these conditions, the CuCoMn salt/PAN precursor nanofibers were collected on the rotating drum.

Preparation of CuCo-MnO@CNTs/CNFs 3D architecture

The CuCoMn salt/PAN precursor nanofibers were put on a home-built chemical vapor deposition furnace for the NH₃-assisted graphitization. The temperature was

firstly heated to 280 °C from room temperature and maintained at 280 °C for 3h. Subsequently, the temperature of the furnace was further heated to 1000 °C under Ar atmosphere with heating rate of 5 °C min⁻¹. Finally, the samples were stabilized at 1000 °C under NH₃/Ar atmosphere for 3h. In comparison, the CuCo-MnO@CNTs/CNFs were prepared with different flow rates of NH₃ (0, 1, 3 and 5 sccm). The control CNFs were prepared without metallic salts in the same process. **Instrumentation**

Field-emission scanning electron microscope (FE-SEM) images were carried out using a JEOL JSM-6700F with acceleration voltage of 3 kV. Crystal structure and selectedarea electron diffraction (SAED) were conducted on a transmission electron microscopy (TEM) with acceleration voltage of 200 kV. Elemental mapping, highangle annular dark field scanning TEM (HAADF-STEM) and lines-scan energy dispersive X-ray spectroscopy (EDX) were recorded on a STEM (Tecnai G2 F30 S-Twin, Philips-FEI) at an acceleration voltage of 300 kV. X-ray diffraction (XRD) patterns of the samples were performed on a SIEMENS Diffractometer D5000 X-ray diffractometer using Cu K_a radiation (λ =1.5406 A°) source at 35 kV, with a scan rate of 0.02° 2 θ s⁻¹ in the 2 θ range of 20-60°. In addition, Surface chemical composition of samples were measured by a Kratos Axis Ultra DLD X-ray photoelectron spectrometer (XPS) with an aluminum (mono) K_a source (1486.6 eV).

Electrochemical performance

Electrochemical performance of the as-synthesized catalysts were performed on an IVIUM electrochemical workstation (Ivium Technologies BV Company, Netherlands) at room temperature. The as-prepared catalysts directly used as the working electrodes without binder in a standard three-electrode system. A saturated calomel electrode (SCE) and the graphite rod were used as the reference electrode and counter electrode. Pt/C and RuO₂ were taken as controls and deposited on glassy carbon electrode (GCE) with diameter of 3 mm for measurement. To prepare the electrocatalyst ink, 3 mg of electrocatalyst was dispersed into 1 mL mixed solvent with a volume ratio of $V_{isopropanol}$: V_{water} =3:1. after 30 min of ultrasonication, 25 µL nafion 117 solution was added. After another 30 min for ultrasonication, 5 µL

electrocatalyst ink was casted on GCE and dried in the air naturally. The cyclic voltammetry curves, the polarization curves and the current-time curves were carried out in 0.5 M H_2SO_4 (pH=0) and 1.0 M KOH (pH=14), respectively. In addition, electrochemical impedance spectra (EIS) were performed in acid environment and the frequency range of the EIS from 100 kHz to 0.001 Hz. The time dependent current density (i-t) curves were examined in acid environment at 0.033 V vs. RHE and in alkaline environment at 1.48 V vs. RHE for 50h, respectively.

Fig. S1. (a) SEM image and (b) the corresponding diameter distrubution of CuCoMn salt/PAN precursor nanofibers.

Fig. S2. (a) The inner diameter distribution and (b) the wall thickness distribution of CNTs in CuCo-MnO@CNTs/CNFs.

Fig. S3. C 1s XPS spectra of CuCo-MnO@CNTs/CNFs.

Fig. S4. Tafel slopes of commercial Pt/C, CuCo-MnO@CNTs/CNFs-5, CuCo-MnO@CNTs/CNFs-3, CuCo-MnO@CNTs/CNFs-1, CuCo-MnO/CNFs and CNFs in (a) 0.5 M H_2SO_4 and (b) 1 M KOH for HER. Tafel slopes of various samples in (c) 0.5 M H_2SO_4 and (d) 1 M KOH for OER.

Fig. S5 LSV curves of CuCo-MnO@CNTs/CNFs-5 tested at different times in (a) 1 M KOH and (b) 0.5 M H_2SO_4 for OER.

Fig. S6. CV curves of (a) CuCo-MnO/CNFs, (b) CuCo-MnO@CNTs/CNFs-1, (c) CuCo-MnO@CNTs/CNFs-3, (d) CuCo-MnO@CNTs/CNFs-5 at different scan rates.

Fig. S7 SEM image of CuCo-MnO@CNTs/CNFs-5 after i-t test.

Fig. S8. LSV curve of CuCo-MnO@CNTs/CNFs-5||CuCo-MnO@CNTs/CNFs-5 electrode for water splitting in 1M KOH.