Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Efficient CO-Release from the Plasmonic Pt Using 1D BiVO₄@TiO₂ Heterojunction for Improved Electrocatalytic and Photoelectrocatalytic Methanol Oxidation

Hina Sajid^a, Safdar Ali^b, Jaweria Ambreen^{* a,c}, Uzma Naz^a, Samiullah Khan^d, Sayed Nauman Shah, ^b, Syafiqah Saidin ^c, Asad Mumtaz^{*, b}

^a Department of Chemistry, COMSATS University Islamabad, Park Road, 45550, Islamabad Pakistan

^b Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, H-12, 44000, Islamabad, Pakistan

^c Dept. Of biomedical engineering & health sciences, Faculty of Electrical engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

^d Smart Surfaces and Materials Group, Functional Materials Lab, Department of Physics, Air University, PAF Complex, Air University, Islamabad, Pakistan

First Corresponding Author

Dr. Asad Mumtaz,

School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), H-12, Islamabad, Pakistan **Mobile:** +923325190321 | Office: +92 51 90855593 E-mail: asad.mumtaz@sns.nust.edu.pk

Second Corresponding Author

Dr. Jaweria Ambreen, jaweria.ambreen@comsats.edu.pk Department of Chemistry, COMSATS University Islamabad, Park Road, 45550, Islamabad Pakistan

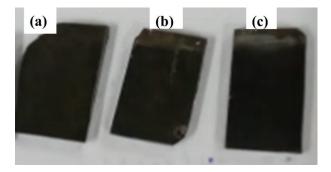


Fig. S1 Optical micrographs of (a) 15-Pt/BiVO₄/TiO₂/FTO (a) 10-Pt/BiVO₄/TiO₂/FTO (a) 5-Pt/BiVO₄/TiO₂/FTO

RESULTS AND DISCUSSION

In **Fig. S2**, Corresponding peaks of FTO (F, Sn, O), TiO_2 (Ti, O), $BiVO_4$ (Bi, V, O) and Pt are shown in EDX spectrum of FTO/ TiO_2 NRs/BiVO₄/Pt with different cycles. The Atomic % of F, Sn, (FTO), Ti (TiO_2), Bi, V, ($BiVO_4$) and O (FTO, TiO_2 & $BiVO_4$) are almost the same for all samples while Pt atomic% varies.

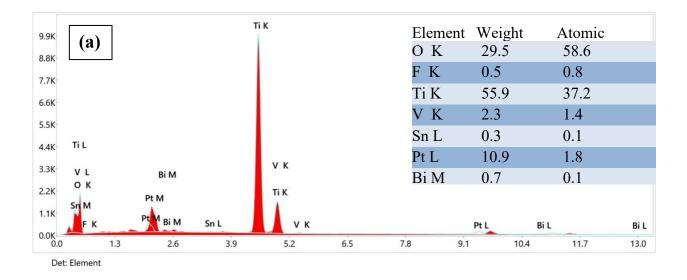
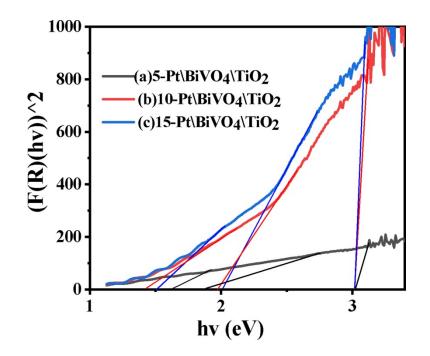



Fig.S2 EDX analysis of Pt/BiVO₄/TiO₂/FTO (a) 5 cycles (b) 15 cycles

Fig.S3 Tauc plot for Band Gap calculation of $BiVO_4/TiO_2/FTO$ nanorods with different cycles of Pt.

GAMRY G3000 in Potentiostatic mode was utilized for conducting electrochemical studies. Firstly, response for $Pt/BiVO_4/TiO_2/FTO$ nanorods electrode was recorded with 1M KOH. There is no oxidation and reduction peaks. Fig. S2 shows the response of $Pt/BiVO_4/TiO_2$ electrode in KOH electrolyte.

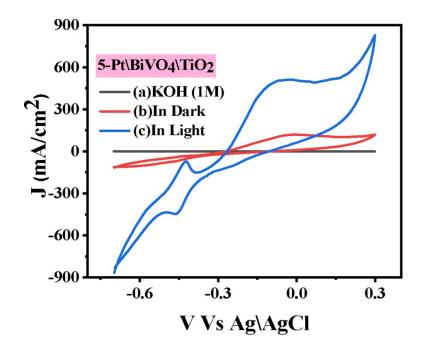
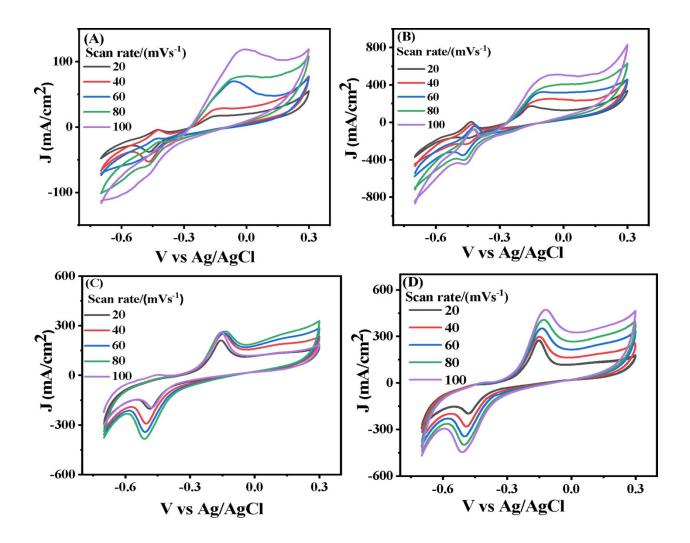
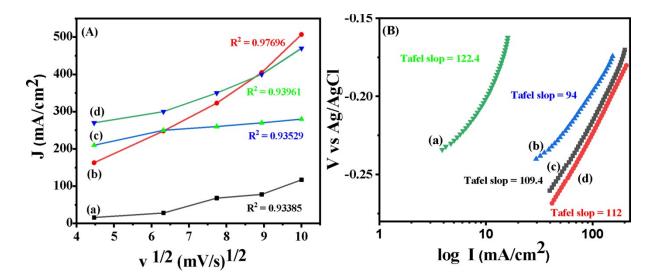




Fig S4. Cyclic Voltammogram of FTO/ TiO_2NRs /BiVO₄/Pt at scan rate 100 mV/s at 5 cycles of Pt.

The cyclic voltammetry of FTO/TiO₂/BiVO₄/Pt (5 and 15 Cycles) with different scan rates in 1 M methanol has been shown in the **Fig. S5**. As we know that when the scan rate increases from 20mV/s to 100mV/s, the current density is increased according to the reaction kinetics. Under dark the current density is 11.9 mA/cm² at -0.02 V and 28.0 mA/cm² at -0.13V as compared to light illumination 50.7 mA/cm² at -0.07 V and 47.0 mA/cm² at -0.12 V for FTO/TiO₂/BiVO₄/Pt 5 cycles and FTO/TiO₂/BiVO₄/Pt 15 cycles respectively, which is higher.

Fig. S5 Cyclic Voltammogram of **(A)** FTO/ TiO₂NRs /BiVO₄/Pt with 5 Cycles in Dark **(B)** FTO/ TiO₂NRs /BiVO₄/Pt with 5 Cycles in Light **(C)** FTO/ TiO₂NRs /BiVO₄/Pt with 15 Cycles in Light **(D)** FTO/ TiO₂NRs /BiVO₄/Pt with 15 Cycles in dark

Fig. S6. (A) A graphical representation of the direct relationship of peak current density versus under root of scan rate (v) in 1 M CH₃OH&1M KOH solution and (B) Tafel plots in 1M KOH & 1M CH₃OH at 20 mV s-1 scan rate for catalysts of (a)TiO₂/BiVO₄/Pt 5 cycles in Dark (b)TiO₂/BiVO₄/Pt 5 cycles in Light (c) TiO₂/BiVO₄/Pt 15 cycles in Dark (d) TiO₂/BiVO₄/Pt 15 cycles in Light