Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

A gas diffusion strategy to engineer hierarchically porous Fe-N-C

electrocatalysts for the high-performance cathodes of Zn-air batteries

Yunxiao Zhang, Wenhua Xiao, Jingqiang Zhang, Tiantian Hu, Shanxia Hu, Minjie

Zhou, Zhaohui Hou, Yu Liu*, Binhong He*

Key Laboratory of Hunan Province for Advanced Carbon-based Functional

Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science

and Technology, Yueyang 414006, Hunan, China

*Corresponding authors.

Email addresses: hiliu2000@126.com (Y. Liu), 11990398@hnist.edu.cn (B. He)

1.1 Materials characterization

1.2 Electrochemical measurements

1.2.1 ORR performance

1.2.2 Zn-air batteries performance

Figure S1 SEM images of NCNF support.

Figure S2 (a-b) High-resolution C1s spectra and (c-d) high-resolution Fe 2p spectra of Fe–NCNF–40 and Fe–NCNF–200.

Figure S3 LSV curves at different rotating speeds for (a) Fe–NCNF–40, (c) Fe–NCNF–120, and (e) Fe–NCNF–200 in O₂-saturated 0.1 M KOH electrolyte (scan rate: 10 mV s⁻¹). K-L plots at various potential for (b) Fe–NCNF–40, (d) Fe–NCNF–120, and (f) Fe–NCNF–200 in O₂-saturated 0.1 M KOH electrolyte.

 Table S1 The specific BET result of Fe–NCNF–40, Fe–NCNF–120, and Fe–NCNF–

 200.

Table S2 The XPS result of Fe–NCNF–40, Fe–NCNF–120, and Fe–NCNF–200.

Table S3 The N 1s spectra fitting result of Fe–NCNF–40, Fe–NCNF–120, and Fe–NCNF–200.

Table S4 The Fe contents in the prepared catalysts obtained from ICP-OES.

 Table S5 A comparison table of the ORR performance between this work and

 recently reported Fe-N-C catalysts in 0.1 M KOH solution.

1.1 Materials characterization

The surface morphologies of the resulting samples were examined by scanning electron microscopy (SEM, JEOL, JSM-6630f) and transmission electron microscopy

(TEM, JEOL, JEM-2100). The crystal structure and defect properties of the samples were characterized by x-ray diffraction (XRD, Rigaku, Ultima IV) and Raman spectroscopy (WITec alpha300R). X-ray photoelectron spectroscopy (XPS) measurements are used to analyze the surface and chemical composition of the sample with a Thermo Scientific K-Alpha. The specific surface area (SSA) and pore distribution of the samples were measured using a microscopic analyzer (ASAP2020HD) by recording N₂ adsorption/desorption isotherms.

1.2 Electrochemical measurements

1.2.1 ORR performance

The electrochemical activity of the sample was measured for ORR performance using a CHI 760E electrochemical workstation in a standard three-electrode system with a platinum foil and saturated Ag/AgCl electrode as counter electrode and reference electrode, and a 5 mm diameter rotating disk electrode (RDE) loaded with catalysts as the working electrode. 4 mg of catalysts were dispersed in 980 μ L of ethanol and 20 μ L of 5 *wt*% Nafion solution to make the catalyst ink. After 30 minutes of sonication, 20 μ L of catalyst ink was spread onto the RDE and naturally dried at room temperature. The geometrical surface area of the disc electrode is 0.196 cm² and the catalyst loading is 0.4 mg cm⁻². For comparison, commercial Pt/C catalyst (De Nora Elettrodi Co. Ltd., 20 *wt*.% Pt on carbon black) with the same loading amount is studied under the same circumstances.

The ORR activities of catalysts were detected in O₂-saturated 0.1 M KOH solution by using a rotating disk electrode (Pine Instrument, MSR analytical rotator).

The ORR kinetic parameters were analyzed by the following Koutechy Levich (K-L) equation:

$$\frac{1}{J} = \frac{1}{0.62 n F C_0 D_0^{2/3} v^{-1/6} \omega^{1/2}} + \frac{1}{J_k}$$

Where *J* is the tested current density, J_K means kinetic current density. *n* represents the electron transfer number, *F* refers to Faraday constant (96485 C mol⁻¹), C_0 is oxygen bulk concentration (1.2×10⁻³ M in 0.1 M KOH), D_0 is the oxygen diffusion coefficient (1.9×10⁻⁵ cm² s⁻¹ in 0.1 M KOH), *v* is electrolyte kinetic viscosity (0.01 cm² s⁻¹) and ω is disk angular velocity.

In basic electrolyte (0.1 M KOH), all potentials can be converted to reversible hydrogen electrode (RHE) by the following equation: $E_{RHE}=E_{Ag/AgCl}$ + 0.97 V. Cyclic voltammetry (CV) curve was tested in N₂ or O₂ saturated electrolyte within a voltage range from -0.2 to 1.2 V (vs. RHE) at a scan rate of 50 mV s⁻¹. Linear sweep voltammetry (LSV) curve was measured at a scan rate of 10 mV s⁻¹ at various rotation speeds from 400 to 1600 rpm within identical voltage range. The onset potential is determined by making a tangent line to the horizontal line and a tangent line to the descending slope, intersecting at a point at which the corresponding potential is the onset potential.

1.2.2 Zn-air batteries performance

In handmade electrochemical cells, tests on liquid Zn–air batteries (ZAB) were carried out. The air cathode is made of hydrophobic carbon paper (3 cm * 3 cm) with a gas diffusion layer on the air-facing side and a catalyst layer on the water-facing side. The loading amount for for NCNF–1 or Pt/C catalyst (20 *wt.*% Pt on carbon

black) is 0.9 mg cm⁻² onto carbon paper, warping the current collector (copper-foam). As the anode, a polished Zn plate (3 cm * 8 cm) was used. The electrolyte for ZAB is 6 M KOH containing 0.2 M Zn(Ac)₂. ZAB was performed with a homemade zinc-air battery and the CHI 760E electrochemical workstation and LAND.

Figure S1 SEM images of NCNF support.

Figure S2 (a-b) High-resolution C1s spectra and (c-d) high-resolution Fe 2p spectra of

Figure S3 LSV curves at different rotating speeds for (a) Fe–NCNF–40, (c) Fe–NCNF–120, and (e) Fe–NCNF–200 in O₂-saturated 0.1 M KOH electrolyte (scan rate: 10 mV s⁻¹). K-L plots at various potential for (b) Fe–NCNF–40, (d) Fe–NCNF–120, and (f) Fe–NCNF–200 in O₂-saturated 0.1 M KOH electrolyte.

Table S1 The specific BET result of Fe–NCNF–40, Fe–NCNF–120, and Fe–NCNF–200.

Samples	Specific Surface Area (m ² g ⁻¹)	Pore Volume (cm ³ g ⁻¹)	Pore size (nm)
Fe-NCNF-40	1004.93	0.81	8.29
Fe-NCNF-120	946.91	1.33	11.45
Fe-NCNF-200	939.16	1.16	12.16

Table S2 The XPS result of Fe–NCNF–40, Fe–NCNF–120, and Fe–NCNF–200.

Samples	C (at. %)	N (at. %)	O (at. %)	Fe (at. %)
Fe-NCNF-40	93.90	2.36	3.63	0.11
Fe-NCNF-120	93.48	2.10	4.21	0.21
Fe-NCNF-200	89.91	2.06	7.67	0.36

Table S3 The N 1s spectra fitting result of Fe–NCNF–40, Fe–NCNF–120, and Fe–
NCNF–200.

Samples	Pyridinic-N (Fe-N) (%)	Pyrrolic–N (%)	Graphitic–N (%)	Oxygenated–N (%)
Fe-NCNF-40	16.51	24.09	46.20	13.20
Fe-NCNF-120	21.37	17.27	47.50	13.86
Fe-NCNF-200	18.19	19.16	48.53	14.10

 Table S4 The Fe contents in the prepared catalysts obtained from ICP-OES.

Samples	Fe (wt%)
Fe-NCNF-40	0.28
Fe-NCNF-120	0.48
Fe-NCNF-200	0.69

Materials	E _{1/2} (V) (vs. RHE) in 0.1 M KOH	References
Fe-NCNF-120	0.90	This work
Fe-N-c	0.82	[1]
FeNC	0.86	[2]
FeSA/HNPC	0.84	[3]
Fe-N-Cwood	0.84	[5]
FNG	0.90	[6]
Hemin@C ₃ N ₄ -900Zn	0.89	[7]
(Fe-N-C/HPCS@CNT	0.87	[8]
Fe ₃ O ₄ /Fe ₃ N/Fe-N-C@PC-2.5	0.87	[9]
Fe-PA/ML0.5-900	0.90	[10]
CA-Fe/MF-N900	0.86	[11]

Table S5 A comparison table of the ORR performance between this work andrecently reported Fe-N-C catalysts in 0.1 M KOH solution.

References

[R1]Chanez M,Yazhou Z,Bing L, et al. A Stabilized Assisted Method for the Synthesis of Fe-N-C Catalysts for the Oxygen Reduction Reaction[J]. Journal of The Electrochemical Society,2022,169(6).
[R2]Williane F S D,Pablo P P M,Alessandra D, et al. Nanostructured Fe-N-C as Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution[J]. Catalysts,2021,11(12).
[R3]Xinxin J,Yan X,Junhong F, et al. A Highly Efficient Fe–N–C Electrocatalyst with Atomically Dispersed FeN4 Sites for the Oxygen Reduction Reaction[J]. ChemCatChem,2021,13(11).
[R4]Dingding L,Zheng H,Kunyue L, et al. Biomass wood-derived efficient Fe–N–C catalysts for oxygen reduction reaction[J]. Journal of Materials Science,2021,56(22).

[R5]Ailing S,Hao T,Wang Y, et al. Enhanced confinement synthesis of atomically dispersed Fe-N-C catalyst from resin polymer for oxygen reduction[J]. Journal of Energy Chemistry,2022,65.

[R6]Zhaoxu L,Xinyi L,Meifang L, et al. Molecule-confined modification of graphitic C_3N_4 to design mesopore-dominated Fe-N-C hybrid electrocatalyst for oxygen reduction reaction[J]. International Journal of Hydrogen Energy,2021,46(59).

[R7]Fei F,Haoran Z,Rui Y, et al. Anchoring Fe-N-C Sites on Hierarchically Porous Carbon Sphere and CNT Interpenetrated Nanostructures as Efficient Cathodes for Zinc-Air Batteries.[J]. ACS applied materials & interfaces,2021.

[R8]Hao R,Chen J,Wang Z, et al. Iron polyphthalocyanine-derived ternary-balanced Fe₃O₄/Fe₃N/Fe-N-

C@PC as a high-performance electrocatalyst for the oxygen reduction reaction[J]. Science China Materials,2021,64(12).

[R9]Azhar M,Nanhong X,Bolin Z, et al. Optimizing Surface N-Doping of Fe-N-C Catalysts Derived from Fe/Melamine-Decorated Polyaniline for Oxygen Reduction Electrocatalysis[J]. Advanced Materials Interfaces,2021,8(13).

[R10]Liu J,Zhu Y,Fan C, et al. Three-Dimensional Porous Fe-N-C Derived from

Iron-Citrate-Functionalized Melamine Foam as a Highly Active Oxygen Reduction Catalyst for Zn–Air Batteries[J]. Energy Technology,2020,8(6).