Supporting Information

High-performance asparagine-modified graphene oxide membranes for organic dyes and heavy metal ions separation

Ashique Hussain Jatoi¹,₸, Akbar Ali²–³,₸, Ahmed Nadeem⁴, Shah Nawaz Phulpoto⁵, Muzaffar Iqbal⁶*, Ayaz Ali Memon⁷, Jun Yang²–³*, Khalid Hussain Thebo⁸*

¹Department of Chemistry, Shaheed Benazir Bhutto University, Shaheed Benazirabad (67480), Pakistan
²State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering (IPE), Chinese Academy of Sciences, Beijing 100F190, China
³University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
⁴Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
⁵Department of Molecular Biology & Genetics, Shaheed Benazir University, Shaheed Benazirabad 67480, Pakistan
⁶Department of Chemistry, Faculty of Physical and Applied Sciences, The University of Haripur (22620), KPK, Pakistan
⁷National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan
⁸Institute of Metal Research (IMR), Chinese Academy of Sciences, Shenyang (110016), China

Corresponding Authors Email: muzaffar.iqbal@uoh.edu.pk (M.I.)
jyang@ipe.ac.cn (J.Y.)*
khalidthebo@yahoo.com (K. H. T.)*
₸ Equal Contribution
Fig. S1 SEM studies and thickness of GO nanosheets.
Fig. S2 Molecular structure and functional groups of Asparagine amino acid
Fig. S3 Ultraviolet-visible absorption spectra of the feed, retentate and permeate of (a) RB, (b) MLB and (c) MB solution after filtration by As@GO composite membrane (~300 ± 10 nm).
Table S1. The equilibrium weight swelling ratio (ESR) of GO-based membranes in water.

<table>
<thead>
<tr>
<th>Membranes</th>
<th>DI Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure GO membrane (320±10)</td>
<td>2.3± 0.1</td>
</tr>
<tr>
<td>As@GO membrane (300±10 nm)</td>
<td>0.8± 0.1</td>
</tr>
</tbody>
</table>