
Supporting Information

Simple Devising of N-doped Carbon Dots (N-CDs) as Low-Cost Probe for Selective Detection of Environment Toxin and Security Applications

Kumaresan Annamalai ^a, Arun Annamalai ^a, Ramya Ravichandran ^a, Anandhavalli Jeevarathinam ^a, Padmanaban Annamalai ^b, Hector Valdes ^b Sundaravadivel Elumalai*

- a. Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur,
 Tamil Nadu 603 203, India.
 - Facultad de Ingeniería, Universidad Catolica de la Santísima Concepcion,
 Concepcion, Chile.

Stability and Surface Charge Studies of N-CDs.

Figure S1. (a) Photostability of N-CDs, (b) PL intensity against 60 days of N-CDs storage time, (c) PL intensity against Photobleaching studies of different ions, (d) pH studies of N-CDs and (f) Zeta potential of N-CDs, (g) temperature dependent studies on N-CDs.

^{*}Corresponding author's E-mail: sundaravadivelchem@gmail.com

Table S1. Comparison of LOD with Reported PA Sensor Probes.

Detection	Detection	Linear	Limit of	Reference
Probe	Method	Range	Detection	
CDs	Fluorescence	1-10 μΜ	0.24 μΜ	1
N-CDs	Fluorescence	0.3-3.3 μΜ	0.11 μΜ	2
N-CDs	Fluorescence	2-45 μΜ	0.45 μΜ	3
N-CDs	Fluorescence	1 - 26 μΜ	82.9 nM	Present work
			(0.08 µM)	

Table S2. Comparison of LOD with Reported Fe³⁺ Sensor Probes.

Detection Probe	Detection	Linear	Limit of	Reference
	Method	Range	Detection	
Citric acid-Glycine based CDs	Fluorescence	0-3.5 μΜ	0.21 μΜ	4
N-doped Cellulose based CDs	Fluorescence	0-100 μΜ	1.14 μΜ	5
Functionalized Citric acid-based CDs	Fluorescence	0-300 μΜ	13.68 μΜ	6
N-CDs	Fluorescence	1-40 μΜ	30 nM	Present work
			(0.03 µM)	

Table. S3. Comparison of LOD with Reported Hg²⁺ Sensor Probes

Detection Probe	Detection	Linear	Limit of	Reference
	Method	Range	Detection	
N, S, P co-doped Cucumber based CDs	Fluorescence	1-70 μΜ	0.18 μΜ	7
Hetero atom doped CDs	Fluorescence	0-12 μΜ	226 nM	8
CDs	Fluorescence	0-50 μΜ	0.41 μΜ	9
N-CDs	Fluorescence	6.5 - 50 μΜ	160 nM	Present work
			(0.016 µM)	

Table S4: Detection of Fe³⁺ & Hg²⁺ and PA in Drinking Water (n=3).

Sample	Spiked (µM)	Detected (µM)	Recovery (%)	RSD (%)
	10	8.96	89.6	2.45
Fe^{3+}	20	19.12	95.6	2.33
	30	29.99	99.9	4.12
	10	9.41	94.0	1.76
Hg^{2+}	20	19.79	98.9	2.56
	30	28.1	93.6	2.56
	10	8.43	84.3	2.34
PA	20	18.87	93.4	2.65
	30	30.96	103.2	3.92

Table S5. Comparison of N-CDs as Probe for Detection of Nitro-explosives and Metal ions.

Nitro-explosives	K _{sv} Value	Linear	Limit of	Lifetime	Mechanism
and Metal ions		Range	Detection	(ns)	
PA	3.3 x 10 ⁴ M ⁻¹	1 - 26 μΜ	82.9 nM	10.2	FRET
Fe^{3+}	$1.8 \times 10^5 \mathrm{M}^{-1}$	1-40 μΜ	30 nM	10.8	IFE
Hg^{2+}	$3.6 \times 10^4 \mathrm{M}^{-1}$	6.5 - 50 μΜ	160 nM	10.4	PET

Table S6. Comparison of High Quantum Dots with Unique Properties

Starting Material	Synthesis	Quantum	Applications	Reference	
	Method	Yield (%)			
Citric acid-Glycine based CDs	Hydrothermal	29.8	Fe ³⁺ and Fingerprint detection	4	
N-doped Cellulose based CDs	Hydrothermal	30.3	Fe ³⁺ detection and Bioimaging	5	
Ammonium citrate based CDs	Hydrothermal	22.79	Mercury (II) and Glutathione Detection	9	
N-CDs	Microwave	33	Fe ³⁺ , Hg ²⁺ and PA detection, Anti-	Present work	
			counterfeiting studies		

REFERENCES

- 1. Khan, Z. M. S. H. *et al.* A facile one step hydrothermal synthesis of carbon quantum dots for label -free fluorescence sensing approach to detect picric acid in aqueous solution. *J Photochem Photobiol A Chem* **388**, (2020).
- 2. Kalanidhi, K. & Nagaraaj, P. Facile and Green synthesis of fluorescent N-doped carbon dots from betel leaves for sensitive detection of Picric acid and Iron ion. *J Photochem Photobiol A Chem* **418**, (2021).
- 3. Abbasi, A. & Shakir, M. Simple One-step Solid-state Synthesis of Highly Crystalline N Doped Carbon Dots As Selective Turn Off-sensor for Picric Acid and Metanil Yellow. *J Fluoresc* **32**, 1239–1246 (2022).
- 4. Feng, R. Q., Yuan, Z. Y. & Ren, T. Z. A facile hydrothermal method for preparation of fluorescent carbon dots on application of Fe3+ and fingerprint detection. *Methods Appl Fluoresc* 7, (2019).
- 5. Liu, Z. et al. Oxidized nanocellulose facilitates preparing photoluminescent nitrogendoped fluorescent carbon dots for Fe3+ ions detection and bioimaging. *Chemical Engineering Journal* **384**, (2020).

- 6. Xie, Z., Sun, X., Jiao, J. & Xin, X. Ionic liquid-functionalized carbon quantum dots as fluorescent probes for sensitive and selective detection of iron ion and ascorbic acid. *Colloids Surf A Physicochem Eng Asp* **529**, 38–44 (2017).
- 7. Wang, C., Sun, D., Zhuo, K., Zhang, H. & Wang, J. Simple and green synthesis of nitrogen-, sulfur-, and phosphorus-co-doped carbon dots with tunable luminescence properties and sensing application. *RSC Adv* **4**, 54060–54065 (2014).
- 8. Shangguan, J. *et al.* Highly Fe3+-Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples. *Anal Chem* **89**, 7477–7484 (2017).
- 9. Cai, L., Fu, Z. & Cui, F. Synthesis of Carbon Dots and their Application as Turn Off–On Fluorescent Sensor for Mercury (II) and Glutathione. *J Fluoresc* **30**, 11–20 (2020).