Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Interaction of phytate with cyclic polyamines

Supplementary material

Julia Torres,^{a*} Nicolás Veiga,^a Matteo Savastano,^b Carlos Kremer,^a Antonio Bianchi^c

^aÁrea Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Gral. Flores 2124, Montevideo, Uruguay. ^bDepartment of Human Sciences and Quality of Life Promotion, University San Raffaele Roma, Via di Val Cannuta 247, 00166 Rome, Italy ^cDepartment of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.

*Corresponding author

Figure S1. RHF/3-21+G* geometries for the 1a5e conformer of two Ins P_6 species: H₄L⁸⁻ (a) and H₆L⁶⁻ (b), taken from a previous work.¹ The electrostatic potential is mapped on an isodensity surface (isodensity value = 0.0004 e, scale: -0.75 V (red) to -0.65 V (blue) for a, and -0.56 V (red) to -0.51 V (blue) for b).

Figure S2- Potentiometric data used for final fit for the InsP₆:polyamine systems as shown by Hyperquad software.² Calculated expected pH values and formed species are also shown.

Figure S3. Percentage of unbound $InsP_6$ in the presence of cyclic polyamines. $[InsP_6]_{total} = [polyamine]_{total} = 1 \ \mu M$, calculated from data in Tables S1 and Table 2 values.

Table S1. Protonation constant values of polyamines and $InsP_6$ at 25.0 °C in 0.15 M NaClO₄ employed for polyamine: $InsP_6$ interaction studies. Stepwise protonation constants are calculated in b) from overall protonation constants shown in a).

a) (Overall pro	tonation co	nstants						
	K ^H 1	β^{H_2}	β ^H 3	β^{H_4}	β^{H_5}	β^{H_6}	β^{H_7}	β ^H 8	Details
12N4	10.71(3)	20.41(4)	22.4(1)	24.4(2)					This work, $\sigma = 1.6$
13N4	11.02(5)	20.84(5)	23.0(1)	24.7(3)					This work, $\sigma = 1.2$
18N6	10.15	19.63	28.52	32.79	35.00	36.0			Taken from ³
Me ₃ 21N7	9.27	18.22	26.19	31.61	34.59	36.37			Taken from ⁴
24N8	9.65	18.98	27.74	35.61	40.16	43.58	46.29	48.24	Taken from ⁵
InsP ₆	10.43(2)	19.55(4)	29.33(2)	38.37(3)	46.18(4)	52.35(5)	57.39(6)	60.08(8)	This work, $\sigma = 0.7$
b) S	b) Stepwise protonation constants								
	K ^H 1	K ^H 2	К^Н3	K ^H 4	К^Н5	K ^H 6	К^Н7	K ^H 8	Details
12N4	10.73	9.69	2.0	2.0					Calculated
13N4	11.02	9.82	2.2	1.7					Calculated
18N6	10.15	9.48	8.89	4.27	2.21	1.0			Calculated
Me ₃ 21N7	9.27	8.95	7.97	5.42	2.99	1.78			Calculated
24N8	9.65	9.33	8.76	7.87	4.55	3.42	2.71	1.95	Calculated
InsP ₆	10.43	9.12	9.78	9.04	7.81	6.17	5.04	2.69	Calculated

Table S2. Effective formation constants for 1:1 adduct formation of polyamines and Ins P_6 at 25.0 °C in 0.15 M NaClO₄. Protons are associated either to the polyamine (A) or Ins P_6 (L) considering the relative basicity of the interacting species. ξ is the product of the charges of the interacting species.⁶

Polyamine	Equilibrium	log K	log K∕ξ
12N4	$H_2A^{2+} + H_2L^{10-} \rightleftharpoons [(H_2A)(H_2L)]^{8-}$	3.99	0.20
	$H_2A^{2+} + H_3L^{9-} \rightleftharpoons [(H_2A)(H_3L)]^{7-}$	3.26	0.18
	$H_2A^{2+} + H_4L^{8-} \rightleftharpoons [(H_2A)(H_4L)]^{6-}$	3.45	0.22
13N4	$H_2A^{2+} + H_2L^{10-} \rightleftharpoons [(H_2A)(H_2L)]^{8-}$	6.00	0.30
	$H_2A^{2+} + H_3L^{9-} \rightleftharpoons [(H_2A)(H_3L)]^{7-}$	4.46	0.25
	$H_2A^{2+} + H_4L^{8-} \rightleftharpoons [(H_2A)(H_4L)]^{6-}$	4.51	0.28
18N6	$H_2A^{2+} + H_4L^{8-} \rightleftharpoons [(H_2A)(H_4L)]^{6-}$	3.70	0.23
	$H_3A^{3+} + H_4L^{8-} \rightleftharpoons [(H_3A)(H_4L)]^{5-}$	3.71	0.15
	$H_{3}A^{3+} + H_{5}L^{7-} \rightleftharpoons [(H_{3}A)(H_{5}L)]^{4-}$	4.94	0.24
	$H_3A^{3+} + H_6L^{6-} \rightleftharpoons [(H_3A)(H_6L)]^{3-}$	6.53	0.36
	$H_3A^{3+} + H_7L^{5-} \rightleftharpoons [(H_3A)(H_7L)]^{2-}$	7.96	0.38
	$\mathrm{H_4A^{4+} + H_7L^{5-} \rightleftharpoons [(H_4A)(H_7L)]^-}$	9.12	0.46
	$H_4A^{4+} + H_8L^{4-} \rightleftharpoons [(H_4A)(H_8L)]$	10.23	0.64
Me ₃ 21N7	$H_{3}A^{3+} + H_{6}L^{6-} \rightleftharpoons [(H_{3}A)(H_{6}L)]^{3-}$	1.82	0.10
24N8	$H_2A^{2+} + H_4L^{8-} \rightleftharpoons [(H_2A)(H_4L)]^{6-}$	5.04	0.32
	$H_{3}A^{3+} + H_{4}L^{8-} \rightleftharpoons [(H_{3}A)(H_{4}L)]^{5-}$	5.44	0.23
	$H_4A^{4+} + H_4L^{8-} \rightleftharpoons [(H_4A)(H_4L)]^{4-}$	5.75	0.18
	$H_4A^{4+} + H_5L^{7-} \rightleftharpoons [(H_4A)(H_5L)]^{3-}$	4.68	0.17
	$H_4A^{4+} + H_6L^{6-} \rightleftharpoons [(H_4A)(H_6L)]^{2-}$	4.63	0.19
	$\mathrm{H_4A^{4+} + H_7L^{5-} \rightleftharpoons [(H_4A)(H_7L)]^{-}}$	4.22	0.21
	$\mathrm{H}_{5}\mathrm{A}^{5_{+}} + \mathrm{H}_{7}\mathrm{L}^{5_{-}} \rightleftharpoons [(\mathrm{H}_{5}\mathrm{A})(\mathrm{H}_{7}\mathrm{L})]$	4.29	0.17

References

- 1N. Veiga, J. Torres, I. Macho, K. Gómez, G. González and C. Kremer, *Dalton Trans.*, 2014, **43**, 16238–16251.
- 2P. Gans, A. Sabatini and A. Vacca, Talanta, 1996, 43, 1739–1753.
- 3A. Bencini, A. Bianchi, M. Micheloni, P. Paoletti, E. Garcia-España and M. A. Niño, *J. Chem. Soc., Dalton Trans.*, 1991, 1171–1174.
- 4A. Andrés, C. Bazzicalupi, A. Bencini, A. Bianchi, V. Fusi, E. Garcia-España, C. Giorgi, N. Nardi, P. Paoletti, J. A. Ramirez and B. Valtancoli, *J. Chem. Soc., Perkin Trans.* 2, 1994, 2367–2373.
- 5A. Bencini, A. Bianchi, P. Dapporto, E. Garcia-Espana, M. Micheloni and P. Paoletti, *Inorg. Chem.*, 1989, **28**, 1188–1191.
- 6C. De Stefano, O. Giuffrè, D. Milea, C. Rigano and S. Sammartano, *Chemical Speciation & Bioavailability*, 2003, **15**, 29–36.