Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Significant enhanced supercapacitor performance of W₃Nb₁₄O₄₄ by introducing serine and histidine-functionalized and boron-doped graphene quantum dot

Li Xiaoshan, Li Ruiyi, Liu Xiaohao and Li Zaijun*

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, China

1. Experimental

1.1. Materials and reagents

Citric acid (CA), serine (Ser), histidine (His) and boric acid (H₃BO₃) were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Ammonium metatungstate and niobium oxalate were purchased from Aladdin. Silver nanowires (Ag NW) in isopropanol (5 mg mL⁻¹) was purchased from Jiangsu XFNANO Materials Tech Co., Ltd. B/GQD was prepared according to reported in the literature. The solid electrolyte (PVA/Li₂SO₄) was prepared by adding 2.0 g polyvinyl alcohol (PVA) and 10 mL of 3 mol L⁻¹ Li₂SO₄ solution in 20 mL ultrapure water and then heated at 75°C with stirring until a clear homogeneous solution was formed. Rambutan was purchased from Hainan Province and then rambutan peel was collected, followed by washing in distilled water and freeze-dried for use.

1.2. Material characterization

The morphology and structure of as-synthesized materials was characterized by scanning electron microscope (SEM, JEOL, S-4800) and transmission electron microscope (TEM, JEOL, Jem-2100). The crystal structure and chemical composition of as-synthesized materials was studied by X-ray diffraction (XRD, Bruker D8 ADVANCE, Cu K α radiation, $\lambda = 0.15406$ nm). The valence states of as-synthesized materials were characterized by X-ray photoelectron spectroscopy (XPS, Kratos, Axis supra) with mono chromated Al KR radiation. The band gap of as-synthesized materials was

evaluated by obtaining UV-visible diffuse reflectance spectra by UV-visible spectrophotometer (UVvis, Shimadzu, UV-3600 Plus). The oxygen vacancies of as-synthesized materials were characterized by the electron paramagnetic resonance spectra (EPR, Bruker EMX PLUS, X-band≈9.8 GHz). The morphology of rambutan peel was characterized by ultra-depth three-dimensional microscope (Keyence, VHX-1000C).

2. Figures and Tables

Fig. s1 The procedure for preparation of Flexible symmetrical supercapacitor

Fig. s2 Diffuse reflectance UV-visible spectroscopies (A) and plots of transformed Kubelka-Munk function vs. the

energy of light (B) of SH-GQD and SHB-GQD

Fig. s3 Optical photographs of mixed ammonium metatungstate with niobium oxalate (left) and

SHB-GQD-W/Nb complex solution (right)

Fig. s4 EDS energy spectrum of $W_3Nb_{14}O_{44}$ -SHB-GQD/BC

Table s1 The ratios (I(f)) of XRD peak intensity to the strongest peak intensity for $W_3Nb_{14}O_{44}$.

	2-Theta	h k 1	PDF-I(f) ratio	W ₃ Nb ₁₄ O ₄₄ -B/GQD-C-I(f) ratio
1	23.629	101	1	0.828
2	29.169	411	0.058	0.213
3	32.759	521	0.676	1
4	34.968	611	0.153	0.226
5	37.062	361	0.074	0.818
6	39.059	271	0.261	0.925
7	42.995	1000	0.045	0.485
8	47.171	851	0.022	0.393
9	52.800	961	0.162	0.396
10	58.035	1211	0.222	0.323
11	62.430	1420	0.016	0.213
12	68.392	6131	0.013	0.097

13	69.839	10120	0.002	0.083
----	--------	-------	-------	-------

Table s2 Element composition in $W_3Nb_{14}O_{44}$ -SHB-GQD/BC

Element	Mass Fraction (%)	Atom Fraction (%)	
С	70.74	89.11	
Ν	0.33	0.35	
0	8.01	7.57	
В	0.03	0.042	
Nb	14.88	2.42	
W 6.01		0.512	

Table s3 EIS parameters for different electrodes

Electrode	W ₃ Nb ₁₄ O ₄₄	B/GQD-C	W ₃ Nb ₁₄ O ₄₄ -B/GQD-C
$R_{s}\left(\Omega ight)$	9.158	5.499	4.845
C (mF cm ⁻²)	0.0000108 0.000252		0.000140
$R_{ct}(\Omega)$	26.76 1.88		0.63
$Z_{ m w}\left(\Omega ight)$	0.696712	0.075045	0.00042961
0.9 A 0.2- 0.5- -1.2 0 400 8	00 1200 1600 2000 Time (c)	600 B 400- 00 Sbecilic capabcitance (E ^{d.}) Sbecilic capabcitance (E ^{d.}) 200- 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Fig. s5 The charge/discharge curves (E) of $W_3Nb_{14}O_{44}$ -SH-GQD/BC electrode at the current density of 1 A g⁻¹, and

specific capacitances (F) of W₃Nb₁₄O₄₄-SH-GQD/BC electrode at different current densities