Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information for

An endoplasmic reticulum-targeted fluorescence probe for ratiometric tracking of endogenous SO₂ derivatives

Yehao Yan^a, Weilei Gong^a, Ruiji Li^d, Jiannan Sun^a, Hua Wang^a, Xiaoying He^{*b}, Yanmei Si^{*c}

^aSchool of Public Health, Jining Medical University, Jining, Shandong, 272067, PR China.

^bDepartment of Nephrology, Shanxi Provincial People's Hospital, Taiyuan, PR China.

^cSchool of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, 272067, PR China.

^dSchool of Pharmacy, Jining Medical University, Shandong, 276826, PR China.

*Corresponding authors: E-mail: amjingying@163.com; siyanmei90@126.com

Table of Content

Fig. S1-3 The spectra of¹H NMR, MS and¹³C NMR of JSS-1.

- Fig. S4 The energy overlap of donor and acceptor.
- Fig. S5 The energy transfer efficiency.
- Fig. S6 The optical properties of the probe JSS-1 in different solvents.
- Fig. S7 light stability of the probe JSS-1 in vitro.
- Fig. S8¹H NMR of the addition product.
- Fig. S9 HR-MS of the addition product.
- Fig. S10 The response time of JSS-1 toward HSO₃⁻/SO₃²⁻.

Fig. S11 Fluorescence spectra (I_{535}/I_{635}) of probe JSS-1 toward HSO₃⁻/SO₃²⁻ in different pH condition.

Fig. S12 The viability of JSS-1inHeLa cells.

Fig. S13 The photo-stability of JSS-1 in living cells.

Table S1 The comparison of probe JSS-1 toward other detection works about HSO_3^{-1}/SO_3^{2-1} .

1. Detection limit

Detection limit = $3\sigma/s$

 σ represents the standard deviation of the detection of 10 probe solutions without the addition of HSO₃⁻/SO₃²⁻. S represents the slope of titration linear relationship.

2. Energy transfer efficiency

 η = 1- F _(donor in FRET system) / F _(donor)

In the equation, η represents the energy transfer efficiency in FRET system. F (donor in FRET system) represents fluorescent intensity of the donor in probe JSS-1 (FRET system). F (donor) represents fluorescent intensity of the donor without any energy transferred.

Fig. S1 The HRMS spectra of JSS-1.

Fig. S3 The ¹³C NMR spectra of JSS-1.

Fig. S4 The energy overlap of donor and acceptor.

Fig. S5 The energy transfer efficiency.

Fig. S6 The optical properties of the probe JSS-1 in different solvents.

Fig. S7 light stability of the probe JSS-1 in vitro. (a) the fluorescence ratio () of probe JSS-1 under light

Fig. S8 ¹H NMR of the addition product.

Fig. S9 HR-MS of the addition product.

Fig. S10 The response time of JSS-1 toward HSO₃^{-/}SO₃²⁻.

Fig. S11 Fluorescence spectra (I_{535}/I_{635}) of probe JSS-1 toward HSO₃⁻/SO₃²⁻ in different pH condition.

Fig. S12 The viability of JSS-1 in HeLa cells.

Fig. S13 The photo-stability of JSS-1 in living cells.

Table S1 The comparison of probe JSS-1 toward other detection works about HSO_3^{-1}/SO_3^{2-1} .

	Probe structure	Organelle targeting	Stokes Shift	Ratiometric	Detection limit	Ref.
1		no obvious targeting	260 nm	Yes	0.10 μΜ	S1
2	~ato,a;-6	lysosome	215 nm	Yes	72.00 nM	S2

3		mitochondria	460 nm	Yes	0.98 µM	S3
4	~ N C OB C OH	mitochondria	100 nm	no	0.17 µM	S4
5	ajado aujo	mitochondria	65 nm	Yes	0.17 μΜ	S5
6		mitochondria	202 nm	no	1.57 μM	S6
7	HO CN	mitochondria	170 nm	Yes	10.20 μM	S7
8	$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	endoplasmic reticulum	235 nm	Yes	86.77 nM	This work

Reference

- [S1] F.T. Liu, N. Li, Y.S. Chen, H.Y. Yu, J.Y. Miao and B.X. Zhao, Anal.
- *Chim. Acta*, **2022**, 1211, 339908.
- [S2] F. Li, B.Z. Zhou, W. Yao, S.K. Sun, J.Y. Miao, B.X. Zhao and Z.M.
- Lin, Anal. Chim. Acta, 2023, 1239, 340721.
- [S3] R. Cui, C. Liu, P. Zhang, K. Qin and Y. Ge, *Molecules*, 2023, 28, 515.
- [S4] J. Chao, Z. Wang, Y. Zhang, F. Huo and C. Yin, *Anal. Methods*, 2021, 13, 3535-3542.

[S5] P. Huang, F. Huo and C. Yin, Analyst, 2022, 147, 5663-5669.

[S6] Q. Yan, X. Yao, Y. Li, K. Zhong, L. Tang, X. Yan, Spectrochim. Acta, Part A, 2023, 299, 122882.

[S7] Y. Du, C. Pan, C. Cao, Spectrochim. Acta, Part A, 2023, 290, 122275.