Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting information

Eco-friendly, in water, catalyst-free assembly of acylethenylpyrroloimidazoindoles from 3*H*-indoles acylpyrrolylacetylenes

Ludmila A. Oparina, Kseniya V. Belyaeva, Nikita A. Kolyvanov, Igor A. Ushakov, Denis N. Tomilin, Lyubov N. Sobenina, Anton V. Kuzmin, Boris A. Trofimov*

A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia

Contents

1	General information	S 2
2	The structure of $3H$ -indoles 1 and acylpyrrolylacetylenes 2	S 2
3	General procedure of pyrrolo[1',2':3,4]imidazo[1,2- <i>a</i>]indole 3 synthesis	S 3
4	Characterization data of products	S4
5	NMR spectra for products	S15
6	Computational details	S40
8	References	S66

1. General Information

NMR spectra were recorded from solutions in CDCl₃ on Bruker DPX-400 and AV-400 spectrometers (400.1 MHz for ¹H, 100.6 MHz for ¹³C, 376.5 MHz for ¹⁹F, and 40.5 MHz for ¹⁵N). Chemical shifts (δ) are quoted in parts per million (ppm). The residual solvent peak, $\delta_{\rm H}$ 7.27 and $\delta_{\rm C}$ 77.10, was used as a reference. CFCl₃ was employed as external standard for ¹⁹N NMR. Coupling constants (*J*) are reported in Hertz (Hz). The multiplicity abbreviations used are: s singlet, d doublet of doublet, t triplet, m multiplet, nr marrow, br broad signal. The values of the δ ¹⁵N were measured through the 2D ¹H-¹⁵N HMBC experiment. The ¹⁵N chemical shifts were referenced to CH₃NO₂.

IR spectra were obtained on a Varian 3100 IF-IR spectrometer (400-4000 cm⁻¹) as thin films dispersed from CDCl₃. Mass spectra of synthesized compounds were recorded on a GCMS-QP5050A spectrometer made by Shimadzu Company. High-resolution mass spectra were recorded from acetonitrile solution with 0.1% HFBA on HPLC Agilent 1200/Agilent 6210 TOF instrument equipped with an electrospray ionization (ESI) source. Melting points (uncorrected) were measured on a melting point apparatus SGW-X-4. Thin layer chromatography was carried out on Merck silica gel 60 F254 pre-coated aluminium foil sheets and were visualized using UV light (254 nm). Column chromatography was carried out using slurry packed Alfa Aesar silica gel (SiO₂), 70-230 mesh, pore size 60 Å.

2. The structure of 3*H*-indoles 1 and acylpyrrolylacetylenes 2

3*H*-Indoles **1a** and **1h** were purchased from commercial sources (Alfa Aesar), and were used without further purification. 3*H*-Indoles **1b-d**,**g-j** were prepared from corresponding aryl hydrazine hydrochlorides and ketones according to the literature procedures¹⁻³ and their characterization data were in accordance with the published ones.

$$R^{1} \xrightarrow[H]{N-NH+HCl} + R^{3} R^{2} \xrightarrow[reflux, 3-8 h]{MeCO_{2}H} R^{1} \xrightarrow[R]{R^{2}R^{2}} R^{3}$$

3*H*-Indoles **1e** and **1f** were prepared from 5-cyano hydrazine hydrochloride and 5-nitro hydrazine and 3-methyl-2-butanone in two steps. Their characterization data were in accordance with the published ones.^{4,5}

Starting acylpyrrolylacetylenes **2a-h** were obtained from corresponding pyrroles and acylbromoacetylenes in the presence of Al_2O_3 . Pyrrole (5.0 mmol) and 1-acyl-2-bromoacetylene (5.0 mmol) were ground together at rt with 10-fold amount of Al_2O_3 (chromatography grade, Merck, pH 6.8–7.8) in a porcelain mortar for 1–2 min. After 3 h, the reaction mixture were chromatographed on a column (Al_2O_3 , eluent *n*-hexane–Et₂O, gradient 9:1 \rightarrow 0:1) to yield acylpyrrolylacetylene **2**.⁶

3. General procedure of pyrrolo[1',2':3,4]imidazo[1,2-a]indole 3 synthesis

Procedure A: To a 4.0 mL vial equipped with a magnetic stirrer, 3*H*-indole **1a-h** (0.5 mmol) and solution of acylpyrrolylacetylene **2a-f** (0.5 mmol) in MeCN (2 ml) added at room temperature. The vial was sealed with a screw-top septum cap and placed in a pre-heated oil bath at 80 °C for 96 h. After cooling down to ambient temperature, the solvent was removed under reduced pressure and residue was purified by column chromatography on silica gel (eluent: hexane/Et₂O, 1:0 \rightarrow 0:1, v/v) to give target adduct **3a-o**.

Procedure B: A 5 ml round bottomed flask equipped with a magnetic stirrer, was charged 3*H*-indole **1a-j** (0.5 mmol), acetylene **2a-h** (0.5 mmol) and H₂O (1 mL). After stirring for ~10 min (~200 min⁻¹) at rt, the sealed reaction flask was placed in a pre-heated oil bath at 100 °C for 8 h. After cooling down to ambient temperature, water was decanted and solid residue was dissolved in CH₂Cl₂ and dried over Na₂SO₄. The solvent was removed under reduced pressure and residue was purified by column chromatography (SiO₂, hexane/Et₂O, 1:0 \rightarrow 0:1, v/v) to give target adduct **3a-w**.

4. Characterization data of products

(*E*)-1-Phenyl-2-(4a,5,5-trimethyl-4a,5-dihydro-11*H*-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol-11-ylidene)ethan-1-one (3a).

Obtained from 3*H*-indole **1a** (80 mg, 0.5 mmol) and pyrrolylacetylene **2a** (98 mg, 0.5 mmol). Yellow solid: 120 mg (yield 68% – procedure A), 148 mg (yield 83% – procedure B); mp 160–162 °C (hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 8.00–7.98 (m, 2 H, H_o), 7.84 (dd, *J* = 3.9, 1.1 Hz, 1 H, H-1), 7.49–7.43 (m, 3 H, H_{m,p}), 7.41–7.40 (m, 2 H, H-8, H-9), 7.23–7.19 (m, 2 H, H-6, H-7), 7.01 (dd, *J* = 2.6, 1.1 Hz, 1 H, H-3), 6.74 (s, 1 H, =CH), 6.55 (dd, *J* = 3.9, 2.6 Hz, 1 H, H-2), 1.64 (s, 3 H, Me-4a), 1.58 (s, 3 H, Me-5), 0.78 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 188.0 (C=O), 148.9 (C-11), 144.8 (C-5a), 141.2 (C_i), 140.3 (C-9a), 133.0 (C-11a), 131.0 (C_p), 128.3 (C_m; C-8), 127.6 (C_o), 125.0 (C-7), 123.0 (C-6), 117.4 (C-9), 116.5 (C-3), 115.1 (C-2), 112.8 (C-1), 91.5 (C-4a), 89.6 (=CH), 47.7 (C-5), 26.1 (Me-5), 23.9 (Me-4a), 19.9 (Me-5) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ –197.3 (N-4), –241.2 (N-10) ppm; IR (film): *v* = 1640 (C=O), 1534 (C=C) cm⁻¹; MS (EI) *m/z*: 354 (27) [M]⁺, 249 (100) [M – PhCO]⁺, 234 (83) [249 – Me]⁺, 233 (17), 105 (27) [PhCO]⁺, 77 (28) [Ph]⁺; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₄H₂₃N₂O⁺: 355.1810, found: 355.1813.

(*E*)-1-Phenyl-2-(4a,5,5,7-tetramethyl-4a,5-dihydro-11*H*-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol-11-ylidene)ethan-1-one (3b).

Obtained from 3*H*-indole **1b** (87 mg, 0.5 mmol) and pyrrolylacetylene **2a** (98 mg, 0.5 mmol). Light yellow solid; 107 mg (yield 58 % – procedure A), 140 mg (yield 76 % – procedure B); mp 193–194 °C (hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 7.99–7.97 (m, 2 H, H_o), 7.83 (dd, *J* = 3.6, 1.0 Hz, 1 H, H-1), 7.49–7.43 (m, 3 H, H_{m,p}), 7.30 (d, 1 H, *J* 8.0 Hz, H-9), 7.20 (d, 1 H, *J* 8.0 Hz, H-8), 7.02 (s, 1 H, H-6), 7.00 (dd, *J* = 2.7, 1.0 Hz, 1 H, H-3), 6.69 (s, 1 H, =CH), 6.55 (dd, *J* = 3.6, 2.7 Hz, 1 H, H-2), 2.40 (s, 3 H, Me-7), 1.64 (s, 3 H, Me-4a), 1.56 (s, 3 H, Me-5), 0.77 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 187.9 (C=O), 149.2 (C-11), 144.9 (C-5a), 141.4 (C_i), 138.0 (C-9a), 134.9 (C-11a), 133.1 (C-7), 130.9 (C_p), 128.7 (C-8), 128.3 (C_m), 127.6 (C_o), 123.8 (C-6), 117.2 (C-9), 116.3 (C-3), 115.0 (C-2), 112.7 (C-1), 91.6 (C-4a), 89.5 (=CH), 47.8 (C-5), 26.1 (Me-5), 23.9 (Me-4a), 21.2 (Me-7), 19.9 (Me-5) ppm; IR (film): v = 1640 (C=O), 1535 (C=C) cm⁻¹; MS (EI) *m/z*: 368 (18) [M]⁺, 263 (100) [M – PhCO]⁺, 248 (94) [263 – Me]⁺, 115 (21), 105 (51) [PhCO]⁺, 91 (18), 77 (66) [Ph]⁺, 51 (19), 41 (13); HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₅H₂₅N₂O⁺: 369.1967, found: 369.1969.

(*E*)-2-(7-Fluoro-4a,5,5-trimethyl-4a,5-dihydro-11*H*-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol-11-ylidene)-1-phenylethan-1-one (3c).

Obtained from 3*H*-indole **1c** (89 mg, 0.5 mmol) and pyrrolylacetylene **2a** (98 mg, 0.5 mmol). Yellow solid; 67 mg (yield 36% – procedure A), 104 mg (yield 56% – procedure B); mp 208–209 °C (CHCl₃/hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 7.98–7.96 (m, 2 H, H_o), 7.83 (dd, J = 3.6, 1.0 Hz, 1 H, H-1), 7.49–7.44 (m, 3 H, H_{mp}), 7.34 (dd, J = 8.6, 4.3 Hz, 1 H, H-9), 7.08 (ddd, J = 8.6, 8.0, 2.5 Hz, 1 H, H-8), 7.00 (dd, J = 2.7, 1.0 Hz, 1 H, H-3), 6.93 (dd, J = 8.0, 2.5 Hz, 1 H, H-6), 6.65 (s, 1 H, =CH), 6.55 (dd, J = 3.6, 2.7 Hz, 1 H, H-2), 1.65 (s, 3 H, Me-4a), 1.56 (s, 3 H, Me-5), 0.78 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃): δ 188.1 (C=O), 160.5 (d, J = 244.8 Hz, C-7), 149.1 (C-11), 147.1 (d, J = 7.5 Hz, C-5a), 141.2 (C_i), 136.6 (C-9a), 132.9 (C-11a), 131.2 (C_p), 128.4 (C_m), 127.6 (C_o), 118.4 (d, J 8.5 Hz, C-9), 116.4 (C-3), 115.3 (C-2), 114.7 (d, J 23.6 Hz, C-8), 113.0 (C-1), 111.0 (d, J 24.0 Hz, C-6), 91.8 (C-4a), 89.6 (=CH), 48.3 (C-5), 26.0 (Me-5), 23.8 (Me-4a), 19.9 (Me-5) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃): δ – 243.7 (N-10), –198.5 (N-4) ppm; ¹⁹F NMR (376.5 MHz, CDCl³): δ –116.79 ppm; IR (film): v = 1641 (C=O), 1538 (C=C) cm⁻¹; MS (EI) *m*/z: 372 (10) [M]⁺, 267 (83) [M – PhCO]⁺, 252 (88) [267 – Me]⁺, 162 (14), 133 (16), 105 (82) [PhCO]⁺, 77 (100) [Ph]⁺, 51 (31), 39 (20); HRMS (ESI-TOF) *m*/z [M+H]⁺ calcd for C₂₄H₂₂FN₂O⁺: 373.1716, found: 373.1717.

(*E*)-2-(7-Chloro-4a,5,5-trimethyl-4a,5-dihydro-11*H*-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol-11-ylidene)-1-phenylethan-1-one (3d).

Obtained from 3*H*-indole **1d** (97 mg, 0.5 mmol) and pyrrolylacetylene **2a** (98 mg, 0.5 mmol). Light yellow solid; 68 mg (yield 35% – procedure A), 111 mg (yield 57% – procedure B); mp 160–161 °C (CHCl₃/hexane);¹H NMR (400.1 MHz, CDCl₃) δ 7.98–7.96 (m, 2 H, H_o), 7.83 (dd, *J* = 3.8, 1.0 Hz, 1 H, H-1), 7.50–7.44 (m, 3 H, H_{m,p}), 7.37 (dd, *J* = 8.3, 2.0 Hz, 1 H, H-8), 7.32 (d, *J* = 8.3 Hz, 1 H, H-9), 7.17 (d, *J* = 2.0 Hz, 1 H, H-6), 6.99 (dd, *J* = 2.5, 1.0 Hz, 1 H, H-3), 6.65 (s, 1 H, =CH), 6.55 (dd, *J* = 3.8, 2.5 Hz, 1 H, H-2), 1.64 (s, 3 H, Me-4a), 1.56 (s, 3 H, Me-5), 0.79 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 188.1 (C=O), 148.6 (C-11), 146.8 (C-5a), 141.1 (C_i), 139.1 (C-9a), 132.9 (C-11a), 131.2 (C_p), 130.4 (C-7), 128.4 (C_m), 128.3 (C-8), 127.6 (C_o), 123.6 (C-6), 118.3 (C-9), 116.4 (C-3), 115.4 (C-2), 113.1 (C-1), 91.6 (C-4a), 90.0 (=CH), 48.2 (C-5), 26.1 (Me-5), 23.9 (Me-4a), 19.8 (Me-5) ppm; IR (film): *v* = 1642 (C=O), 1536 (C=C) cm⁻¹; MS (EI) *m*/*z*: 388 (12) [M]⁺, 285 (28), 284 (15), 283 (73) [M – PhCO]⁺, 270 (23), 269 (18), 268 (65) [283 – Me]⁺, 115 (26), 105 (92) [PhCO]⁺, 77 (100) [Ph]⁺, 51 (29), 41 (10), 39 (17); HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₂₄H₂₂ClN₂O⁺: 389.1421, found: 389.1424.

(*E*)-4a,5,5-Trimethyl-11-(2-oxo-2-phenylethylidene)-4a,5-dihydro-11H-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indole-carbonitrile (3e).

Obtained from 3*H*-indole **1e** (92 mg, 0.5 mmol) and pyrrolylacetylene **2a** (98 mg, 0.5 mmol). Light yellow solid; yield: 28 mg (15% – procedure A), 65 mg (yield 34% – procedure B); mp 170–171 °C (EtOH); ¹H NMR (400.1 MHz, CDCl₃) δ 7.98–7.97 (nr m, 2 H, H_o), 7.85 (dd, J = 3.8, 1.0 Hz, 1 H, H-1), 7.72 (d, J = 8.2 Hz, 1 H, H-9), 7.52–7.44 (m, 5 H, H_{m,p}; H-8; H-6), 7.00 (dd, J = 2.7, 1.0 Hz, 1 H, H-3), 6.71 (s, 1 H, =CH), 6.57 (dd, J = 3.8, 2.7 Hz, 1 H, H-2), 1.64 (s, 3 H, Me-4a), 1.61 (s, 3 H, Me-5), 0.83 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 188.1 (C=O), 147.3 (C-11), 146.0 (C-5a), 144.2 (C-9a), 140.8 (C_i), 133.5 (C-8), 132.6 (C-11a), 131.5 (C_p), 128.5 (C_m), 127.6 (C_o), 126.5 (C-6), 118.8 (CN), 117.0 (C-9), 116.8 (C-3), 115.8 (C-2), 113.5 (C-1), 107.9 (C-7), 91.5 (C-4a), 91.1 (=CH), 47.8 (C-5), 26.4 (Me-5), 24.29 (Me-4a), 19.7 (Me-5) ppm; IR (film): v = 2225 (CN), 1644 (C=O), 1540 (C=C) cm⁻¹; MS (EI) *m*/*z*: 379 (15) [M]⁺, 275 (21), 274 (72) [M – PhCO]⁺, 259 (82) [274 – Me]⁺, 278 (22), 115 (12), 105 (100) [PhCO]⁺, 77 (98) [Ph]⁺, 51 (27), 39 (19); HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₂₅H₂₂N₃O⁺: 380.1763, found: 380.1764.

(*E*)-1-Phenyl-2-(4a,5,5-trimethyl-7-nitro-4a,5-dihydro-11*H*-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol-11-ylidene)ethan-1-one (3f).

Obtained from 3*H*-indole **1f** (102 mg, 0.5 mmol) and pyrrolylacetylene **2a** (98 mg, 0.5 mmol). Citric needles; 18 mg (yield 9% – procedure A), 39 mg (yield 20% – procedure B); mp 188–189 °C (hexane/EtOAc); ¹H NMR (400.1 MHz, CDCl₃) δ 8.36 (d, *J* = 8.6 Hz, 1 H, H-8), 8.07 (s, 1 H, H-6), 7.99–7.97 (m, 2 H, H_o), 7.86 (dd, *J* = 3.8, 1.0 Hz, 1 H, H-1), 7.51–7.47 (m, 4 H, H_{m,p}; H-9), 7.02 (br s, 1 H, H-3), 6.75 (s, 1 H, =CH), 6.58 (dd, *J* = 3.8, 2.5 Hz, 1 H, H-2), 1.67 (s, 6 H, Me-4a; Me-5), 0.88 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 188.1 (C=O), 146.9 (C-11), 146.1 (C-5a), 145.9 (C-9a), 144.6 (C-7), 140.7 (C_i), 132.6 (C-11a), 131.5 (C_p), 128.5 (C_m), 127.6 (C_o), 125.5 (C-8), 118.9 (C-6), 116.9 (C-3), 116.0 (C-9), 115.9 (C-2), 113.7 (C-1), 91.9 (C-4a), 91.4 (=CH), 47.8 (C-5), 26.4 (Me-5), 24.3 (Me-4a), 19.7 (Me-5) ppm; IR (film): *v* = 1645 (C=O), 1542 (C=C), 1519 (NO₂) cm⁻¹; MS (EI) *m/z*: 399 (14) [M]⁺, 295 (20), 294 (92) [M – PhCO]⁺, 233 (22), 115 (24), 105 (100) [PhCO]⁺, 77 (94) [Ph]⁺, 51 (22), 39 (12); HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₄H₂₂N₃O⁺: 400.1661, found: 400.1662.

(E)-1-Phenyl-2-(12a,13,13-trimethyl-12a,13-dihydro-8*H*-benzo[*e*]pyrrolo[1',2':3,4]-imidazo[1,2-*a*]indol-8-ylidene)ethan-1-one (3h).

Obtained from 3*H*-indole **1h** (105 mg, 0.5 mmol) and pyrrolylacetylene **2a** (98 mg, 0.5 mmol). Pale yellow solid; 146 mg (yield 72% – procedure A), 178 mg (yield 88% – procedure B); mp 215–216 °C (CHCl₃/hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 8.11 (d, *J* = 8.4 Hz, 1 H, H-1), 7.98–7.93 (m, 4 H, H_o; H-5; H-6), 7.87 (dd, *J* = 3.9, 1.1 Hz, 1 H, H-9), 7.69 (d, *J* = 8.6 Hz, 1 H, H-4), 7.55–7.52 (m, 1 H, H-2), 7.48–7.43 (m, 4 H, H-3; H_{m,p}), 7.09 (dd, *J* = 2.6, 1.1 Hz, 1 H, H-11), 6.83 (s, 1 H, =CH), 6.58 (dd, *J* = 3.9, 2.6 Hz, 1 H, H-10), 1.99 (s, 3 H, Me-12a), 1.76 (s, 3 H, Me-13), 1.02 (s, 3 H, Me-13) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 188.0 (C=O), 149.5 (C-8), 141.3 (C_i), 138.6 (C-13a), 136.8 (C-6a), 133.3 (C-8a), 132.1 (C-4a), 131.0 (C_p), 130.4 (C-1a), 129.8 (C-4), 128.3 (C_m), 127.6 (C_o), 127.7 (C-3), 127.1 (C-2), 124.8 (C-3), 122.4 (C-1), 117.5 (C-11), 116.3 (C-6), 115.2 (C-10), 112.9 (C-9), 91.6 (C-12a), 89.3 (=CH), 49.9 (C-13), 24.4 (Me-13), 23.8 (Me-12a), 22.4 (Me-13) ppm; IR (film): v = 1639 (C=O), 1513 (C=C) cm⁻¹; MS (EI) *m/z*: 404 (427) [M]⁺, 299 (100) [M – PhCO]⁺, 284 (75) [299 – Me]⁺, 194 (21), 152 (12), 105 (47) [PhCO]⁺, 77 (21) [Ph]⁺; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₈H₂₅N₂O⁺: 405.1967, found: 405.1968.

(E) - 1 - (Furan - 2 - yl) - 2 - (4a, 5, 5 - trimethyl - 4a, 5 - dihydro - 11H - pyrrolo[1', 2': 3, 4] imidazo[1, 2 - a] indol - 11 - ylidene) ethan - 1 - one (3i).

Obtained from 3*H*-indole **1a** (80 mg, 0.5 mmol) and pyrrolylacetylene **2b** (93 mg, 0.5 mmol). Yellow solid; 125 mg (yield 73% – procedure A), 131 mg (yield 76% – procedure B); mp 133–135 °C (hexane/CHCl₃); ¹H NMR (400.1 MHz, CDCl₃) δ 7.81 (dd, *J* = 3.9, 1.1 Hz, 1 H, H-1), 7.53 (dd, *J* = 1.7, 0.7 Hz, 1 H, H-5'), 7.47–7.45 (m, 1 H, H-9), 7.43–7.39 (m, 1 H, H-8), 7.21–7.16 (m, 2 H, H-6, H-7), 7.15 (dd, *J* = 3.4, 0.7 Hz, 1 H, H-3'), 6.98 (dd, *J* = 2.6, 1.1 Hz, 1 H, H-4'), 1.63 (s, 3 H, Me-4a), 1.57 (s, 3 H, Me-5), 0.76 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 176.7 (C=O), 155.4 (C-2'), 148.8 (C-11), 144.8 (C-5a), 144.7 (C-5a), 144.4 (C-5'), 140.2 (C-9a), 133.1 (C-11a), 128.4 (C-8), 125.1 (C-7), 123.0 (C-6), 117.5 (C-9), 116.4 (C-3), 115.2 (C-2), 113.5 (C-3'), 112.1 (C-4'), 91.6 (C-4a), 88.8 (=CH), 47.7 (C-5), 26.1 (Me-5), 23.9 (Me-4a), 19.9 (Me-5) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ –197.3 (N-4), –241.2 (N-10) ppm; IR (film): *v* = 1637 (C=O), 1537 (C=C) cm⁻¹; MS (EI) *m/z*: 344 (34) [M]⁺, 249 (84) [M – FurylCO]⁺, 234 (100) [249 – Me]⁺, 95 (87) [FurylCO]⁺; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₂H₂₁N₂O₂⁺: 345.1603, found: 345.1605.

(E) - 1 - (Thien - 2 - yl) - 2 - (4a, 5, 5 - trimethyl - 4a, 5 - dihydro - 11H - pyrrolo[1', 2': 3, 4] imidazo[1, 2 - a] indol - 11 - ylidene) ethan - 1 - one (3j).

Obtained from 3*H*-indole **1a** (80 mg, 0.5 mmol) and pyrrolylacetylene **2c** (101 mg, 0.5 mmol). Brownish solid; 126 mg (yield 70% – procedures A and B); mp 101–103 °C (hexane/CHCl₃);¹H NMR (400.1 MHz, CDCl₃) δ 7.80 (dd, *J* = 3.8, 1.0 Hz, 1 H, H-1), 7.70 (dd, *J* = 3.8, 0.9 Hz, 1 H, H-3'), 7.50 (dd, *J* = .8, 0.9 Hz, 1 H, H-5'), 7.42–7.41 (nr m, 2 H, H-8; H-9), 7.20–7.18 (m, 2 H, H-6; H-7), 7.11 (dd, *J* = 4.8, 3.8 Hz, 1 H, H-4'), 6.99 (dd, *J* = 2.6, 1.0 Hz, 1 H, H-3), 6.65 (s, 1 H, =CH), 6.53 (dd, *J* 3.7, 2.6 Hz, 1 H, H-2), 1.63 (s, 3 H, Me-4a), 1.57 (s, 3 H, Me-5), 0.77 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 180.2 (C=O), 148.7 (C-11), 148.3 (C-2'), 144.8 (C-5a), 140.3 (C-9a), 133.0 (C-11a), 130.7 (C-5'), 128.6 (C-8), 128.3 (C-3'), 127.8 (C-4'), 125.1 (C-7), 123.0 (C-6), 117.4 (C-9), 116.4 (C-3), 115.2 (C-2), 113.0 (C-1), 91.6 (C-4a), 88.8 (=CH), 47.8 (C-5), 26.1 (Me-5), 23.9 (Me-4a), 19.9 (Me-5) ppm; IR (film): *v* = 1627 (C=O), 1538 (C=C) cm⁻¹; MS (EI) *m/z*: 360 (21) [M]⁺, 249 (92) [M – ThCO]⁺, 234 (100) [249 – Me]⁺, 111 (74) [ThCO]⁺, 91 (18), 77 (18), 39 (52); HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₂H₂₁N₂OS⁺: 361.1375, found: 361.1377.

(*E*)-1-(Furan-2-yl)-2-(12a,13,13-trimethyl-12a,13-dihydro-8*H*-benzo[*e*]pyrrolo[1',2':3,4]imidazo[1,2-a]indol-8-ylidene)ethan-1-one (3k).

Obtained from 3*H*-indole **1h** (105 mg, 0.5 mmol) and pyrrolylacetylene **2b** (93 mg, 0.5 mmol). Yellow solid; 144 mg (yield 73% – procedure A), 154 mg (yield 78% – procedure B); mp 198–200 °C; ¹H NMR (400.1 MHz, CDCl₃) δ 8.09 (d, *J* = 8.5 Hz, 1 H, H-1), 7.96 (d, *J* = 8.6 Hz, 1 H, H-5), 7.93 (d, *J* = 8.2 Hz, 1 H, H-6), 7.85 (dd, *J* = 3.9, 1.1 Hz, 1 H, H-9), 7.72 (d, *J* = 8.6 Hz, 1 H, H-4), 7.53–7.50 (m, 2 H, H-5', H-2), 7.45 (t, *J* = 7.4 Hz, 1 H, H-3), 7.13 (dd, *J* = 3.4, 0.7 Hz, 1 H, H-3'), 7.08 (br s, 1 H, H-11), 6.79 (s, 1 H, =CH), 6.56 (dd, *J* = 3.9, 2.6 Hz, 1 H, H-10), 6.50 (dd, *J* = 3.4, 1.7 Hz, 1 H, H-4'), 1.97 (s, 3 H, Me-12a), 1.74 (s, 3 H, Me-13), 0.99 (s, 3 H, Me-12) ppm; ¹³C NMR (100.6 MHz, CDCl₃): δ 176.6 (C=O), 155.4 (C-2'), 149.3 (C-8), 144.3 (C-5'), 138.3 (C-13a), 136.7 (C-6a), 133.3 (C-8a), 132.0 (C-4a), 130.3 (C-13b), 129.7 (C-4), 129.6 (C-5), 127.0 (C-2), 124.8 (C-3), 122.3 (C-1), 117.4 (C-11), 116.3 (C-6), 115.2 (C-10), 113.5 (C-3'), 113.0 (C-9), 112.0 (C-4'), 91.6 (C-12a), 88.4 (=CH), 49.8 (C-13), 24.3 (Me-13), 23.8 (Me-12a), 22.4 (Me-13) ppm; IR (film): v = 1636 (C=O), 1514 (C=C) cm⁻¹; MS (EI) *m/z*: 394 (52) [M]⁺, 299 (100) [M – FurylCO]⁺, 284 (75) [299 – Me]⁺, 95 (29) [FurylCO]⁺; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₆H₂₃N₂O₂⁺: 395.1760, found: 395.1761.

(*E*)-1-(Thien-2-yl)-2-(12a,13,13-trimethyl-12a,13-dihydro-8*H*-benzo[*e*]pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol-8-ylidene)ethan-1-one (3l).

Obtained from 3*H*-indole **1h** (105 mg, 0.5 mmol) and pyrrolylacetylene **2c** (101 mg, 0.5 mmol). Yellow solid; 164 mg (yield 80% – procedure A); 166 mg (yield 81% – procedure B); mp 206–208 °C (hexane/EtOAc); ¹H NMR (400.1 MHz, CDCl₃) δ 8.10 (d, *J* = 8.4 Hz, 1 H, H-1), 7.98–7.93 (m, 2 H, H-4, H-5), 7.83 (br s, 1 H, H-9), 7.70–7.68 (m, 2 H, H-6, H-3'), 7.55–7.45 (m, 3 H, H-2, H-3, H-5'), 7.11–7.10 (m, 2 H, H-11, H-4'), 6.73 (s, 1 H, =CH), 6.56 (br s, 1 H, H-10), 1.97 (s, 3 H, Me-12a), 1.75 (s, 3 H, Me-13), 1.00 (s, 3 H, Me-13) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 180.1 (C=O), 149.3 (C-8), 148.3 (C-2'), 138.4 (C-6a), 136.8 (C-13a), 133.2 (C-8a), 132.1 (C-4a), 130.7 (C-5'), 130.4 (C-13b), 129.8 (C-5), 129.7 (C-4), 128.6 (C-3'), 127.8 (C-4'), 127.1 (C-2), 124.8 (C-3), 122.4 (C-1), 117.3 (C-6), 116.4 (C-11), 115.2 (C-10), 113.0 (C-9), 91.7 (C-12a), 88.9 (=CH), 49.9 (C-13), 24.3 (Me-13), 23.8 (Me-12a), 22.4 (Me-13) ppm; IR (film): v = 1626 (C=O), 1513 (C=C) cm⁻¹; MS (EI) *m/z*: 410 (8) [M]⁺, 299 (100) [M – ThCO]⁺, 284 (52) [299 – Me]⁺, 194 (20), 165 (19), 111 (100) [ThCO]⁺, 83 (12) [Th]⁺, 39 (37); HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₆H₂₃N₂OS⁺: 411.1531, found: 411.1530.

(*E*)-1-Phenyl-2-(5a,6,6-trimethyl-1,2,3,4a,5-hexahydro-12*H*-imidazo[1,2-*a*:3,4-*a*']diindol-12-ylidene)ethan-1-one (3m).

Obtained from 3*H*-indole **1a** (80 mg, 0.5 mmol) and pyrrolylacetylene **2f** (125 mg, 0.5 mmol). Orange solid; 71 mg (yield 40% – procedure A), 96 mg (yield 54% – procedure B); mp 135–137 °C (hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 8.00–7.98 (m, 2 H, H_o), 7.71 (s, 1 H, H-13), 7.46–7.44 (m, 3 H, H_{m,p}), 7.39 (nr m, 2 H, H-9, H-10), 7.21–7.14 (m, 2 H, H-7, H-8), 6.66 (s, 1 H, =CH), 2.84–2.74 (m, 2 H, H-4), 2.69–2.66 (m, 2 H, H-1), 1.94–1.92 (m, 2 H, H-3), 1.87–1.73 (m, 2 H, H-2), 1.63 (s, 6 H, Me-5a, Me-6), 0.88 (s, 3 H, Me-6) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 187.5 (C=O), 148.5 (C-12), 144.7 (C-6a), 141.7 (C_i), 139.9 (C-10a), 131.5 (C-12a), 131.0 (C_p), 128.3 (C-4a), 128.2 (C_m; C-9), 127.5 (C_o), 125.2 (C-13a), 124.7 (C-8), 123.0 (C-7), 117.1 (C-10), 112.3 (C-13), 92.4 (C-5a), 88.4 (=CH), 47.7 (C-5), 29.8 (C-4), 27.0 (Me-6), 23.9 (C-1), 23.6, 23.3 (C-2, C-3), 22.2 (Me-5a), 20.7 (Me-6) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ – 203.2 (N-5), –241.2 (N-11) ppm; IR (film): ν = 1640 (C=O), 1534 (C=C) cm⁻¹; MS (EI) *m/z*: 354 (27) [M]⁺, 249 (100) [M – PhCO]⁺, 234 (83) [249 – Me]⁺, 233 (17), 105 (27) [PhCO]⁺, 77 (28) [Ph]⁺; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₈H₂₉N₂O⁺: 355.1810, found: 355.1813.

(*E*)-1-Phenyl-2-(4a,5,5-trimethyl-3-phenyl-4a,5-dihydro-11*H*-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol-11-ylidene)ethan-1-one (3n).

Obtained from 3*H*-indole **1a** (80 mg, 0.5 mmol) and pyrrolylacetylene **2d** (136 mg, 0.5 mmol). Yellow solid; 93 mg (yield 43% – procedure A), 110 mg (yield 52% – procedure B); mp 169–171 °C (hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 8.01–8.00 (nr m, 3 H, H-1, H_o, Ph), 7.48 (nr m, 8 H, H_{m,p}, Ph; Ph'), 7.41–7.37 (m, 2 H, H-8, H-9), 7.14–7.08 (m, 2 H, H-6, H-7), 6.74 (s, 1 H, =CH), 6.44 (br s, 1 H, H-2), 1.67 (s, 3 H, Me-5), 0.88 (s, 3 H, Me-5), 0.82 (s, 3 H, Me-4a) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 187.8 (C=O), 148.4 (C-11), 145.2 (C-5a), 141.5 (C_i, Ph), 139.8 (C-9a), 133.7 (C_i, Ph'), 133.5 (C-3), 133.0 (C-11a), 131.1 (C_m, Ph'), 130.9 (C_p, Ph), 128.9 (C_p, Ph'), 128.3 (C_o, Ph'), 128.1 (C_m, Ph; C-8), 127.6 (C_o, Ph), 125.0 (C-7), 123.0 (C-6), 117.3 (C-9), 116.1 (C-2), 112.9 (C-1), 93.3 (C-4a), 89.1 (=CH), 48.0 (C-5), 26.2 (Me-5), 24.8 (Me-4a), 19.1 (Me-5) ppm; IR (film): v = 1640 (C=O), 1534 (C=C) cm⁻¹; MS (EI) *m/z*: 430 (87) [M]⁺, 325 (37) [M – PhCO]⁺, 310 (21) [325 – Me]⁺, 105 (100) [PhCO]⁺, 77 (77) [Ph]⁺, 51 (12); HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₀H₂₇N₂O⁺: 431.2123, found: 431.2126.

(*E*)-2-(7-fluoro-4a,5,5-trimethyl-3-(thiophen-2-yl)-4a,5-dihydro-11*H*-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol-11-ylidene)-1-phenylethan-1-one (30).

Obtained from 3*H*-indole **1c** (89 mg, 0.5 mmol) and pyrrolylacetylene **2e** (139 mg, 0.5 mmol). Orange solid; 98 mg (yield 43% – procedure A), 123 mg (yield 54% – procedure B); mp 123–125 °C (hexane/EtOAc); ¹H NMR (400.1 MHz, CDCl₃) δ 7.99–7.97 (m, 2 H, H_o), 7.94 (d, *J* = 3.9 Hz, 1 H, H-1), 7.50–7.44 (m, 4 H, H_{mp}; H-5'), 7.33 (dd, *J* = 8.6, 4.3 Hz, 1 H, H-9), 7.21 (dd, *J* = 3.8, 0.9 Hz, 1 H, H-3'), 7.14 (dd, *J* = 4.8, 3.8 Hz, 1 H, H-4'), 7.06 (ddd, *J* = 8.7, 8.0, 2.6 Hz, 1 H, H-8), 6.85 (dd, *J* = 8.0, 2.6 Hz, 1 H, H-6), 6.66 (s, 1 H, =CH), 6.56 (d, *J* = 3.9 Hz, 1 H, H-2), 1.78 (s, 3 H, Me-5), 1.03 (s, 3 H, Me-4a), 0.85 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 187.9 (C=O), 160.4 (d, *J* = 244.8 Hz, C-7), 148.0 (C-11), 147.5 (d, *J* = 7.7 Hz, C-5a), 141.3 (C_i), 135.8 (d, *J* = 2.0 Hz, C-9a), 134.4 (C-2'), 132.8 (C-11a), 131.1 (C-5'), 130.1 (C_p), 128.4 (C_m), 127.6 (C_o; C-3'), 127.1 (C-4'), 124.7 (C-3), 118.9 (C-2), 118.1 (d, *J* 8.5 Hz, C-9), 114.6 (d, *J* = 23.7 Hz, C-8), 112.9 (C-1), 111.0 (d, *J* = 21.1 Hz, C-6), 93.7 (C-4a), 89.4 (=CH), 48.4 (C-5), 26.2 (Me-5), 24.7 (Me-4a), 19.3 (Me-5) ppm; ¹⁹F NMR (376.5 MHz, CDCl³): δ – 116.79 ppm; IR (film): v = 1643 (C=O), 1538 (C=C) cm⁻¹; MS (EI) *m*/*z*: 454 (7) [M]⁺, 349 (19) [M – PhCO]⁺, 334 (10) [349 – Me]⁺, 105 (100) [PhCO]⁺, 77 (59) [Ph]⁺; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₂₈H₂₄FN₂OS⁺: 456.1672, found: 4563.1675.

(*E*)-2-(4a'-methyl-4a'*H*,11'*H*-spiro[cyclohexane-1,5'-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol]-11-ylidene)-1-phenylethan-1-one (3p).

Obtained from 3*H*-indole **1i** (100 mg, 0.5 mmol) and pyrrolylacetylene **2a** (98 mg, 0.5 mmol). Yellow solid; 138 mg (yield 70% – procedure B); mp 141–143 °C (hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 7.99–7.97 (m, 2 H, H_o), 7.86 (d, *J* = 3.5 Hz, 1 H, H-1'), 7.53 (d, *J* = 7.5 Hz, 1 H, H-6'), 7.48–7.44 (m, 3 H, H_{mp}), 7.41–7.40 (m, 2 H, H-8', H-9'), 7.19–7.15 (m, 1 H, H-7'), 7.06 (d, *J* = 2.6 Hz, 1 H, H-3'), 6.72 (s, 1 H, =CH), 6.56 (dd, *J* = 3.5, 2.6 Hz, 1 H, H-2'), 2.22-2.18 (m, 1 H, Cy), 2.03-1.96 (m, 1 H, Cy), 1.91–1.88 (m, 2 H, Cy), 1.71–1.66 (m, 1 H, Cy), 1.61 (s, 3 H, Me-4a), 1.29–1.25 (m, 3 H, Cy), 1.03-1.01 (m, 2 H, Cy) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 188.1 (C=O), 148.9 (C-11'), 144.3 (C-5a'), 141.3 (C_i), 140.6 (C-9a'), 133.4 (C-11a'), 131.0 (C_p), 128.3 (C_m), 128.1 (C-8'), 127.6 (C_o), 125.8 (C-7'), 124.5 (C-6'), 118.0 (C-3'), 116.9 (C-9'), 115.1 (C-2'), 112.9 (C-1'), 92.0 (C-4a'), 88.8 (=CH), 51.2 (C-5'), 33.1, 29.1, 25.3 23.4 (4×C, Cy), 23.3 (Me-4a), 20.8 (Cy) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ –241.3 (N-10), –198.3 (N-4) ppm; IR (film): v = 1640 (C=O), 1534 (C=C) cm⁻¹; MS (EI) *m/z*: 394 (11) [M]⁺, 289 (100) [M – PhCO]⁺, 246 (22), 105 (33) [PhCO]⁺, 77 (43) [Ph]⁺; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₇H₂₇N₂O⁺: 395.2123, found 395.2122.

(*E*)-1-(Furan-2-yl)-2-(4a'-methyl-4a'*H*,11'*H*-spiro[cyclohexane-1,5'-pyrrolo[1',2':3,4]imidazo[1,2-*a*]indol]-11'-ylidene)ethan-1-one (3q).

Obtained from 3*H*-indole **1i** (100 mg, 0.5 mmol) and pyrrolylacetylene **2b** (93 mg, 0.5 mmol). Light yellow solid; 107 mg (yield 56% – procedure B); mp 162–164 °C; ¹H NMR (400.1 MHz, CDCl₃) δ 7.83 (d, *J* = 3.6 Hz, 1 H, H-1'), 7.52 (s, 1 H, H-5''), 7.51 (d, *J* = 6.7 Hz, 1 H, H-6'), 7.47–7.40 (m, 2 H, H-8', H-9'), 7.17 (t, *J* = 7.5 Hz, 1 H, H-7'), 7.13 (d, *J* = 3.0 Hz, 1 H, H-3''), 7.04 (br s, 1 H, H-3'), 6.68 (s, 1 H, =CH), 6.54 (dd, *J* = 3.6, 2.6 Hz, 1 H, H-2'), 6.50 (dd, *J* = 3.4, 1.7 Hz, 1 H, H-4''), 2.20–2.17 (m, 1 H, Cy), 2.02–1.95 (m, 1 H, Cy), 1.00–1.82 (m, 2 H, Cy), 1.72–1.66 (m, 1 H, Cy), 1.60 (s, 3 H, Me-4a), 1.31–1.23 (m, 3 H, Cy), 1.03–0.95 (m, 2 H, Cy) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 176.7 (C=O), 155.5 (C-2''), 148.7 (C-11'), 144.3 (C-5a'), 144.2 (C-5''), 140.5 (C-9a'), 133.5 (C-11a'), 128.1 (C-8'), 125.8 (C-7'), 124.5 (C-6'), 118.0 (C-9'), 116.9 (C-3'), 115.1 (C-2'), 113.4 (C-3''), 113.0 (C-1'), 112.0 (C-4''), 92.1 (C-4a'), 87.9 (=CH), 51.1 (C-5'), 33.0, 29.1 (2×C, Cy), 25.2 (Me-4a), 23.4, 23.3, 20.8 (3×C, Cy) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ –198.2 (N-4), –240.8 (N-10) ppm; IR (film): ν = 1636 (C=O), 1535 (C=C) cm⁻¹; MS (EI) *m/z*: 384 (21) [M]⁺, 289 (100) [M – Furoyl]⁺, 115 (13), 95 (36) [Furoyl]⁺, 41 (11), 39 (21); HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₅H₂₅N₂O₂⁺: 385.1916, found: 385.1918.

(*E*)-2-(12a-Methyl-8*H*,12a*H*-spiro[benzo[*e*]pyrrolopyrrolo[1',2':3,4]imidazo[1,2-*a*]indole-13,1'-cyclohexan]-8-ylidene)-1-phenylethan-1-one (3r).

Obtained from 3H-indole 1j (125 mg, 0.5 mmol) and pyrrolylacetylene 2a (98 mg, 0.5 mmol). Purified by washing with diethyl ether. Light yellow solid; 187 mg (yield 84% – procedure B); mp 299–300 °C (CHCl₃/EtOAc); ¹H NMR (400.1 MHz, CDCl₃) δ 8.33 (d, J 8.7 Hz, 1 H, H-1), 7.95–7.93 (m, 4 H, H_o; H-4, H-5), 7.89 (d, J = 3.5, 1.0 Hz, 1 H, H-9), 7.65 (d, J = 8.7 Hz, 1 H, H-6), 7.55–7.51 (m, 1 H, H-2), 7.46–7.40 (m, 4 H, $H_{m,p}$; H-4), 7.25 (dd, J = 2.5, 1.0 Hz, 1 H, H-11), 6.77 (s, 1 H, =CH), 6.58 (dd, J = 3.5, 2.5 Hz, 1 H, H-10), 2.98 (td, J = 14.3, 3.9 Hz, 1 H, H-2'), 2.40 (d, J = 14.3 Hz, 1 H, H-2'), 2.08 (d, J = 14.0 Hz, 1 H, Cy), 1.92–1.75 (m, 3 H, Cy), 1.75 (s, 3 H, Me-12a), 1.68–1.09 (m, 4 H, Cy) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 188.0 (C=O), 149.4 (C-8), 141.4 (C_i), 137.7 (C-6a), 136.4 (C-13a), 134.1 (C-8a), 132.5 (C-4a), 131.0 (C_n, Ph), 130.2 (2×C, C-4, C-5), 129.9 (C-1a), 128.3 (C_m), 127.6 (C_o), 126.8 (C-2), 124.5 (C-3), 122.5 (C-1), 120.0 (C-11), 117.5 (C-6), 115.2 (C-10), 113.4 (C-9), 92.3 (C-12a), 88.2 (=CH), 54.3 (C-13), 32.6, 29.4, 25.5 (3×C, Cy), 25.4 (Me-12a), 23.5, 22.5 (2×C, Cy) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ –198.1 (N-12), –241.2 (N-7) ppm; IR (film): v = 1637 (C=O), 1537 (C=C) cm⁻¹; MS (EI) m/z: 444 (8) $[M]^+$, 339 (100) $[M - PhCO]^+$, 194 (14), 165 (18), 105 (88) $[PhCO]^+$, 77 (76) $[Ph]^+$, 51 (12), 44 (18), 41 (13); HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{31}H_{29}N_2O^+$: 445.22799, found: 445.22799.

(E)-2-(12a-Methyl-8H,12aH-spiro[benzo[e]pyrrolo[1',2':3,4]imidazo[1,2-a]indole-13,1'-cyclohexan]-8-ylidene)-1-(thiophen-2-yl)ethan-1-one (3s).

Obtained from 3*H*-indole 1j (125 mg, 0.5 mmol) and pyrrolylacetylene 2c (101 mg, 0.5 mmol). Light yellow solid; 135 mg (yield 60% – procedure B); mp 283–285 °C (CHCl₃/hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 8.32 (d, J = 8.6 Hz, 1 H, H-1), 7.92–7.89 (m, 2 H, H-4, H-5), 7.84 (d, J = 3.7 Hz, 1 H, H-9), 7.65 (dd, J = 8.7, 8.8 Hz, 1 H, H-6), 7.62 (d, J = 3.7 Hz, 1 H, H-3"), 7.54 (dd, J = 8.7, 8.6 Hz, 1 H, H-2), 7.49 (d, J = 4.9 Hz, 1 H, H-5"), 7.45 (dd, J = 8.7, 8.6 Hz, 1 H, H-3), 7.24 (dd, J = 2.5, 1.0 Hz, 1 H, H-11), 7.09–7.07 (m, 1 H, H-4"), 6.68 (s, 1 H, =CH), 6.57 (dd, J = 3.7, 2.5 Hz, 1 H, H-10), 2.98 (td, J = 14.2, 3.6 Hz, 1 H, H-2'), 2.40 (d, J = 14.1 Hz, 1 H. Cv). 2.07 (d, J = 13.9 Hz, 1 H, Cy), 1.90 (d, J = 13.9 Hz, 1 H, Cy), 1.82 (dd, J = 14.1, 5.2 Hz, 1 H, Cy), 1.75 (s, 3 H, Me-12a), 1.75–1.73 (m, 1 H, H-6'), 1.66 (d, J = 15.2 Hz, 1 H, Cy), 1.51 (dt, J = 12.9, 3.9 Hz, 1 H, Cy), 1.36 (d, J = 14.1 Hz, 1 H, Cy), 1.10 (tt, J = 13.0, 4.3 Hz, 1 H, H-5') ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 180.2 (C=O), 149.1 (C-8), 148.5 (C-2"), 137.6 (C-6a), 136.4 (C-13a), 134.0 (C-8a), 132.6 (C-4a), 130.6 (C-5"), 130.2 (2×C, C-5, C-13b), 129.9 (C-4), 128.5 (C-3"), 127.7 (C-4"), 126.8 (C-2), 124.6 (C-3), 122.5 (C-1), 120.0 (C-11), 117.3 (C-6), 115.2 (C-10), 113.6 (C-9), 91.4 (C-12a), 87.8 (=CH), 54.3 (C-13), 32.6, 29.4 (2×C, C-2', C-6'), 25.4 (2×C, Me-12a, C-4'), 23.4, 22.5 (2×C, C-3', C-5') ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ -198.1 (N-12), -241.2 (N-7) ppm; IR (film): v = 1625 (C=O), 1513 (C=C) cm⁻¹; MS (EI) m/z: 450 (18) $[M]^+$, 340 (27), 339 (100) $[M - ThCO]^+$, 165 (12), 111 (53) $[ThCO]^+$, 39 (15); HRMS (ESI-TOF) $m/z [M+H]^+$ calcd for $C_{29}H_{27}N_2OS^+$: 451.1844, found: 451.1844.

(E) - 1 - (Furan - 2 - yl) - 2 - (4a, 5, 5, 7 - tetramethyl - 4a, 5 - dihydro - 11H - pyrrolo[1', 2': 3, 4] imidazo[1, 2 - a] indol - 11 - ylidene) ethan - 1 - one (3t).

Obtained from 3*H*-indole **1b** (87 mg, 0.5 mmol) and pyrrolylacetylene **2b** (93 mg, 0.5 mmol). Light yellow solid; 142 mg (yield 79% – procedure B); mp 167–169 °C (CHCl₃/hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 7.80 (dd, *J* = 3.8, 1.1 Hz, 1 H, H-1), 7.53 (dd, *J* = 1.7, 0.6 Hz, 1 H, H-5'), 7.34 (d, *J* = 7.9 Hz, 1 H, H-9), 7.20 (d, *J* = 7.9 Hz, 1 H, H-8), 7.13 (dd, *J* = 3.4, 0.6 Hz, 1 H, H-3'), 7.00 (s, 1 H, H-6), 6.98 (dd, *J* = 2.6, 1.1 Hz, 1 H, H-3), 6.66 (s, 1 H, =CH), 6.52 (dd, *J* = 3.8, 2.6 Hz, 1 H, H-2), 6.50 (dd, *J* = 3.4, 1.7 Hz, 1 H, H-4'), 2.39 (s, 3 H, Me-7), 1.62 (s, 3 H, Me-4a), 1.55 (s, 3 H, Me-5), 0.75 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 176.6 (C=O), 155.5 (C-2'), 149.0 (C-11), 144.8 (C-5a), 144.2 (C-5'), 137.8 (C-9a), 134.9 (C-7), 133.1 (C-11a), 128.7 (C-8), 123.7 (C-6), 117.2 (C-9), 116.3 (C-3), 115.1 (C-2), 113.3 (C-3'), 112.8 (C-1), 112.0 (C-4'), 91.7 (C-4a), 88.6 (=CH), 47.7 (C-5), 26.0 (Me-5), 23.8 (Me-4a), 21.3 (Me-7), 19.9 (Me-5) ppm; IR (film): *v* = 1638 (C=O), 1542 (C=C) cm⁻¹; MS (EI) *m/z*: 358 (37) [M]⁺, 263 (90) [M – FurylCO]⁺, 248 (100) [263 – Me]⁺, 95 (29) [FurylCO]⁺, 39 (16); HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₃H₂₃N₂O₂⁺: 359.1759, found: 359.1760.

(E)-2-(7-Fluoro-4a,5,5-trimethyl-4a,5-dihydro-11H-pyrrolo[1',2':3,4]imidazo[1,2-a]indol-11-ylidene)-1-(thiophen-2-yl)ethan-1-one (3u).

Obtained from 3*H*-indole **1c** (89 mg, 0.5 mmol) and pyrrolylacetylene **2c** (101 mg, 0.5 mmol). Yellow solid; 121 mg (yield 64% – procedure B); mp 191–192 °C (hexane); ¹H NMR (400.1 MHz, CDCl₃) δ 7.78 (dd, J = 3.8, 1.0 Hz, 1 H, H-1), 7.68 (dd, J = 3.7, 1.0 Hz, 1 H, H-3'), 7.50 (dd, J = 4.9, 1.0 Hz, 1 H, H-5'), 7.34 (dd, J = 8.5, 4.3 Hz, 1 H, H-9), 7.12–7.06 (m, 2 H, H-8, H-4'), 6.98 (dd, J = 2.6, 1.0 Hz, 1 H, H-3), 6.92 (dd, J = 7.9, 2.6 Hz, 1 H, H-6), 6.56 (s, 1 H, =CH), 6.52 (dd, J = 3.8, 2.6 Hz, 1 H, H-2), 1.63 (s, 3 H, Me-4a), 1.54 (s, 3 H, Me-5), 0.75 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 180.2 (C=O), 160.5 (d, J = 245.0 Hz, C-7), 148.8 (C-11), 148.2 (C-2'), 147.1 (d, J = 7.6 Hz, C-5a), 136.5 (C-9a), 132.8 (C-11a), 130.8 (C-5'),), 128.7 (C-3'), 127.8 (C-4'), 118.3 (d, J = 8.6 Hz, C-9), 116.4 (C-3), 115.4 (C-2), 114.7 (d, J = 23.6 Hz, C-6), 111.1 (C-1), 111.9 (d, J = 24.2 Hz, C-8), 91.8 (C-4a), 89.2 (=CH), 48.3 (C-5), 25.9 (Me-5), 23.7 (Me-4a), 19.8 (Me-5) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ –198.1 (N-4), –244.2 (N-10) ppm; ¹⁹F NMR (376.5 MHz, CDCl³): δ –116.70 ppm; IR (film): v = 1629 (C=O), 1539 (C=C) cm⁻¹. MS (EI) *m/z*: 378 (22) [M]⁺, 267 (88) [M – ThCO]⁺, 252 (100) [267 – Me]⁺, 251 (23), 162 (11), 133 (13), 111 (74) [ThCO]⁺, 83 (12), 39 (31); HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₂H₂₀FN₂OS⁺: 379.1280, found: 379.1277.

(*E*)-2-(3-Butyl-4a,5,5-trimethyl-2-propyl-4a,5-dihydro-11*H*-pyrrolo[1',2':3,4]imidazo[1,2-a]indol-11-ylidene) phenyl ethan-1-one (3v).

Obtained from 3*H*-indole **1a** (80 mg, 0.5 mmol) and pyrrolylacetylene **2g** (147 mg, 0.5 mmol). Brownish gum; 93 mg (yield 41% – procedure B); ¹H NMR (400.1 MHz, CDCl₃) δ 7.99–7.96 (m, 2 H, H_o), 7.80 (s, 1 H, H-1), 7.45–7.44 (m, 3 H, H_{m,p}), 7.39 (nr m, 2 H, H-8, H-9), 7.21–7.17 (m, 2 H, H-6, H-7), 6.62 (s, 1 H, =CH), 2.78-2.70 (m, 2 H, H-4, Bu), 2.47 (t, *J* = 7.6 Hz, 2 H, H-3, Pr), 1.75–1.69 (m, 2 H, H-2, Pr), 1.67 (br s, 6 H, Me-4a, Me-5), 1.62–1.59 (m, 2 H, H-3, Bu), 1.53–1.46 (m, 2 H, H-2, Bu), 1.02 (t, *J* = 7.6 Hz, 3 H, H-1, Pr), 1.00 (t, *J* = 7.6 Hz, 3 H, H-1, Bu), 0.86 (s, 3 H, Me-5) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 187.7 (C=O), 148.6 (C-11), 145.0 (C-5a), 141.8 (C_i), 139.9 (C-9a), 131.0 (C-3), 130.7 (C_p), 130.6 (C-2), 128.3 (3×C, C_m; C-8), 127.6 (C_o, Ph), 124.8 (C-7), 123.0 (C-6), 117.3 (C-9), 113.8 (C-1), 93.0 (C-4a), 88.3 (=CH), 47.9 (C-5), 32.7 (C-3, Bu), 28.8 (C-3, Pr), 26.5 (C-4, Bu), 26.4 (Me-5), 24.0 (Me-4a), 23.6 (C-2, Pr), 23.2 (C-2, Bu), 20.8 (Me-5), 14.3 (C-1, Pr), 13.9 (C-1, Bu) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ –240.9 (N-10), –200.6 (N-4) ppm; IR (film): *v* = 1641 (C=O), 1534 (C=C) cm⁻¹; MS (EI) *m/z*: 452 (19) [M]⁺, 437 (15) [M – Me]⁺, 347 (77) [M – PhCO]⁺, 105 (100) [PhCO]⁺, 77 (42) [Ph]⁺; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₃₁H₃₇N₂O⁺: 453.2906, found: 453.2903.

Ethyl (2E)-2-(14a,15,15-trimethyl-10,11,12,13,14a,15-hexahydro-8*H*-benzo[*e*]imidazo[1,2-*a*:3,4-*a*']diindol-8-ylidene)ethanoate (3w).

Obtained from 3*H*-indole **1h** (105 mg, 0.5 mmol) and pyrrolylacetylene **2h** (109 mg, 0.5 mmol). Pale yellow solid; 98 mg (yield 46% – procedure B); mp 181–182 °C (CHCl₃/hexane); ¹H NMR $(400.1 \text{ MHz}, \text{CDCl}_3) \delta 8.07 \text{ (d, } J = 8.6 \text{ Hz}, 1 \text{ H}, \text{H-1}), 7.89 \text{ (d, } J = 8.2 \text{ Hz}, 1 \text{ H}, \text{H-4}), 7.85 \text{ (d, } J = 8.2 \text{ Hz}, 1 \text{ H}, 1 \text{$ 8.7 Hz, 1 H, H-5), 7.55 (d, J = 8.7 Hz, 1 H, H-6), 7.49 (t, J = 7.6 Hz, 1 H, H-2), 7.41 (t, J = 7.4 Hz, 1 H, H-3), 7.28 (s, 1 H, H-9), 5.56 (s, 1 H, =CH), 4.19 (dq, J = 7.1, 1.7 Hz, 2 H, OCH₂), 2.88-2.82 (m, 2 H, H-10), 2.66 (nr m, 2 H, H-13), 1.99 (s, 3 H, Me-15), 1.98-1.93 (m, 2 H, H-11), 1.86-1.76 (m, 2 H, H-12), 1.71 (s, 3 H, Me-14a), 1.30 (t, J = 7.1 Hz, 3 H, MeCH₂), 1.09 (s, 3 H, Me-15) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 168.1 (C=O), 148.8 (C-8), 138.4 (C-15a), 135.9 (C-6a), 131.9 (C-8a), 130.8 (C-4a), 130.2 (C-15b), 129.8 (C-4), 129.4 (C-5), 127.8 (C-2), 127.7 (C-13a), 125.2 (C-9a), 124.3 (C-3), 122.3 (C-1), 117.6 (C-6), 110.5 (C-9), 92.6 (C-14a), 81.1 (=CH), 58.9 (CH₂O), 49.6 (C-15), 25.3 (Me-15), 24.1 (C-13), 23.7 (C-10), 23.4, 23.3 (C-11, C-12), 22.9 (Me-14a), 22.3 (Me-15), 14.8 (MeCH₂) ppm; ¹⁵N NMR (40.6 MHz, CDCl₃) δ –203.9 (N-14), -247.1 (N-7) ppm; IR (film): v = 1694 (C=O), 1518 (C=C) cm⁻¹; MS (EI) m/z: 427 (19), $426(75)[M]^+, 411(100)[M - Me]^+, 353(41)[M - CO_2Et]^+, 338(21), 194(37), 169(25), 161$ (22), 148 (21); HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{28}H_{31}N_2O_2^+$: 427.2386, found: 427.2387.

5. NMR spectra for products

S17

S19

¹³C NMR Spectrum of **3e** (100.62 MHz, CDCl₃)

- 0.83

1.64 1.61

¹³C NMR Spectrum of **3f** (100.62 MHz, CDCl₃)

8.334 8.327.955 7.995 7.995 7.995 7.995 7.995 7.945 7.955 7.9457 7.9457 7.9457 7.9457 7.94577 7.945777 7.94577777.

¹³C NMR Spectrum of **3r** (100.62 MHz, CDCl₃)

S34

-60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -16 ppm ¹⁹F NMR Spectrum of **3u** (376.50 MHz, CDCl₃)

¹³C NMR Spectrum of **3v** (100.62 MHz, CDCl₃)

6. Computational details

All calculations were performed using the Gaussian09 suite of programs.⁷ Based on general recommendations,⁸ geometry optimization was performed using Head-Gordon's long-range corrected DFT-D2 hybrid functional (ω B97XD)⁹ and balanced split valence triple- ξ with two sets of polarization functions Def2-TZVPP basis set. To achieve an accurate total energy, Grimme's B2PLYP-D3BJ double hybrid density functional and the same basis set with an additional diffuse function set on all atoms, Def2-TZVPPD, single point energy refinement step was performed utilizing optimized geometry.¹⁰ Tight SCF convergence threshold and ultrafine DFT integration grid were applied at all calculation steps. Solvation effect on the mechanism was performed for water, using Truhlar's universal solvation model density (SMD) throughout the manuscript.¹¹ For each stationary point, second derivatives of the energy with respect to the Cartesian nuclear coordinates were calculated to confirm whether these structures were local minima or transition states. All transition state calculations were accompanied by intrinsic reaction coordinate (IRC) calculations at @B97XD/DGDZVP level of theory to verify that each transition state connected the corresponding reactant and product.¹² For structure visualization, ChemCraft 1.8 was employed.¹³ Charge model 5 (CM5) charges proposed by Truhlar et al.¹⁴ were performed using Multiwfn 3.8 and the B2PLYP-D3BJ/Def2-TZVPPD "relaxed correlated" wavefunction.¹⁵ Both DFT functionals predict comparable relative total energies of intermediates, the RMSE and MAD are ca. 1.5 and 1.3 kcal/mol, respectively.

Fig. S1. Free energy profile for competitive intermediate F' and intermediate G' formation.

Cartesian coordinates, the number of imaginary frequencies, and computed total energies of target and optimized structures

$H_2($); E_B2PLYP-E	O3BJ = -76.4278	88065349; E_wB97XD = -76.45353003570; ZPE =
0.02	21470; $Qcorr = 0$	0.024306; Hcorr	r = 0.025250; Gcorr = 0.003835;
0	-0.16698501	0.00000000	-0.74674174
Η	-0.16698501	0.75734120	-0.15889386
Н	-0.16698501	-0.75734120	-0.15889386

1a (isomer 1); E_B2PLYP-D3BJ = -630.4646802491; E_wB97XD = -630.73367765; ZPE = 0.185198 Qcorr = 0.197436; Hcorr = 0.198381; Gcorr = 0.143683;

0.1	0.0100 Qcom = 0	.177 150, 110011	- 0.170501, 00
С	-0.05084386	0.04069298	-0.48247833
С	-1.29953088	-0.06148905	0.12963796
С	1.09924149	0.10657712	0.30099306
С	-1.39397905	-0.09719064	1.50876598
С	1.00132107	0.07036815	1.68214842
С	-0.24374478	-0.03139058	2.28598359
Η	-2.19035245	-0.11195915	-0.48111227
Η	2.07109875	0.18613717	-0.16795960
Η	-2.36375273	-0.17665584	1.98111579
Η	1.89640157	0.12115389	2.28706288
Η	-0.31965000	-0.05955369	3.36500721
С	0.02120128	0.07619268	-1.96505982
0	-0.97804473	0.01525694	-2.67106896
С	1.31824182	0.18566792	-2.56668256
С	2.39645954	0.27608255	-3.10408986
С	3.64514370	0.38104422	-3.72759125
С	3.96578027	0.43008159	-5.07475426
Η	3.25411132	0.39151225	-5.88282024
С	5.36335181	0.53650160	-5.16685931
Η	5.95079354	0.59664931	-6.06764630
С	5.85808031	0.54941056	-3.87879816
Η	6.87049354	0.61830766	-3.51876297
Ν	4.82192530	0.45590204	-3.02054964
Η	4.89183118	0.44136518	-2.01679638

1a (isomer 2); E_B2PLYP-D3BJ = -630.46476419972; E_wB97XD = -630.733752219; ZPE = 0.185344; Qcorr = 0.197534; Hcorr = 0.198478; Gcorr = 0.144237;

0.10	0.000 - 0.000 - 0.0000 - 0.00000 - 0.00000000	1,1,7,3,5,7,110011	-0.170+70, 0
С	-0.06524803	0.02663542	-0.52591235
С	-1.31072531	-0.01140701	0.10005191
С	1.09485384	0.05454331	0.24506448
С	-1.39204051	-0.02124510	1.48044451
С	1.00999487	0.04431515	1.62753561
С	-0.23187685	0.00655634	2.24514707
Η	-2.20948565	-0.03272049	-0.50068045
Η	2.06424163	0.08408041	-0.23467557
Η	-2.35932252	-0.05066483	1.96354327
Η	1.91275337	0.06569127	2.22270411
Η	-0.29760921	-0.00125493	3.32518164
С	-0.00679920	0.03628620	-2.00952929
0	-1.01467045	0.00858779	-2.70531387
С	1.28805382	0.07994741	-2.62423938
С	2.36627908	0.11556088	-3.16804482
С	3.62504652	0.15705813	-3.77874117
С	4.88685581	0.19091855	-3.20678639
Η	5.08692366	0.19011093	-2.14803538
С	5.81934205	0.22555621	-4.25654830
Η	6.89248318	0.25687367	-4.16960004
С	5.10563356	0.21201272	-5.43762268
Η	5.44386010	0.22872012	-6.45969414
Ν	3.79013524	0.17083499	-5.14333895

1a' (isomer 1); E_B2PLYP-D3BJ = -706.89862707126; E_wB97XD = -707.19362383; ZPE = 0.20922; Qcorr = 0.224971; Hcorr = 0.225915; Gcorr = 0.163656;

		,	
С	-3.63651604	-0.16443788	1.68359257
С	-4.89003753	-0.24436974	2.28891152
С	-2.48765634	-0.16929124	2.47134874
С	-4.98999937	-0.32793185	3.66574421
С	-2.59088014	-0.25291649	3.84997874
С	-3.84073898	-0.33205329	4.44731765
Η	-5.78012620	-0.24071273	1.67494531
Η	-1.51182749	-0.10756470	2.00841392
Η	-5.96352586	-0.39022045	4.13296338
Η	-1.69578450	-0.25622962	4.45714930
Η	-3.92135485	-0.39733581	5.52441479
С	-3.55645377	-0.07483508	0.20321081
0	-4.55525826	-0.06484335	-0.50668229
С	-2.25301767	0.00193116	-0.38720673
С	-1.16430020	0.06669827	-0.90796639
С	0.09891418	0.14274194	-1.50585683
С	0.44515128	0.24260817	-2.84537776
Η	-0.25187628	0.27698290	-3.66645485
С	1.84662224	0.28906988	-2.90723414
Η	2.45459279	0.36605764	-3.79318538
С	2.31340164	0.21600242	-1.60867543
Η	3.32157046	0.22010779	-1.22966309
Ν	1.26085424	0.12880488	-0.77259786
Η	1.30732183	0.05671391	0.24546991
0	1.30995360	-0.09771538	2.09006377
Η	1.67708120	0.70122608	2.47404540
Η	1.91950242	-0.79434962	2.34249671

1a' (isomer 2); E_B2PLYP-D3BJ = -706.89872387234; E_wB97XD = -707.19390106; ZPE = 0.209174; Qcorr = 0.224984; Hcorr = 0.225928; Gcorr = 0.162930;

··-·	, , , , ,	0.22	0.220/20, 0
С	-3.55069065	-0.19472263	1.54058890
С	-4.82598141	-0.24072244	2.10250395
С	-2.43224152	-0.13079298	2.36878437
С	-4.97802218	-0.22276225	3.47683899
С	-2.58784609	-0.11351594	3.74500367
С	-3.85919611	-0.15928978	4.29891722
Η	-5.69191521	-0.28965295	1.45675791
Η	-1.43992741	-0.09483986	1.93883445
Η	-5.96827729	-0.25824934	3.91044724
Η	-1.71735184	-0.06463017	4.38493808
Η	-3.98030957	-0.14552410	5.37407564
С	-3.41453271	-0.21488735	0.06290757
0	-4.38382811	-0.27704528	-0.68483284
С	-2.09392235	-0.15841694	-0.49015609
С	-1.00413561	-0.11292654	-1.01043109
С	0.24199792	-0.06102272	-1.64543259
С	1.52209648	0.00643461	-1.11681200
Η	1.76081200	0.03029854	-0.06632783

С	2.41390785	0.03579330	-2.20096333
Η	3.48893412	0.08761297	-2.15483494
С	1.65579687	-0.01389915	-3.35556580
Η	1.95912205	-0.01151258	-4.38888735
Ν	0.35434793	-0.07251981	-3.01469806
Η	-0.44977128	-0.11604589	-3.63837273
0	-2.27439664	-0.20666023	-4.25153172
Η	-2.69123869	-0.39102643	-3.40541636
Η	-2.50754843	0.70527120	-4.43824865

2a; E_B2PLYP-D3BJ = -481.53565071948; E_wB97XD = -481.782716556; ZPE = 0.214254; Qcorr = 0.224940; Hcorr = 0.225884; Gcorr = 0.178668;

200	511 = 0.221710, 1	10011 = 0.22300	1, 0001 - 0.17
С	0.28832640	0.85327981	-3.44417620
С	-0.99008985	0.82629003	-2.89561547
С	1.40337768	0.83837486	-2.63229769
С	-1.18831394	0.78396046	-1.52799234
С	1.21713203	0.79574944	-1.25169199
С	-0.06297779	0.76909025	-0.70897034
Η	2.40136043	0.85929338	-3.05278367
Η	-2.18578585	0.76322651	-1.10847683
Η	2.07674190	0.78352666	-0.59443654
Η	-0.18625760	0.73635218	0.36576018
С	0.13620976	0.89684318	-4.93916415
С	0.74067353	-0.33747972	-5.61773567
С	0.72028978	2.17917674	-5.54222705
Η	0.27659823	3.06628063	-5.08889864
Η	1.79700952	2.20593110	-5.37153924
Η	0.54347999	2.21222347	-6.61783654
Η	1.81787270	-0.35667360	-5.44908826
Η	0.56317869	-0.30937624	-6.69337998
Η	0.31207585	-1.25713146	-5.21790296
С	-1.38263469	0.88718552	-5.03303926
Ν	-1.98941172	0.84821454	-3.90091443
С	-2.09361067	0.91954736	-6.33325512
Η	-1.80603665	0.06008084	-6.94240889
Η	-3.17165701	0.91074271	-6.19038880
Η	-1.81379005	1.81292855	-6.89530735

2a'; E_B2PLYP-D3BJ = -557.97109021666; E_wB97XD = -558.244361218; ZPE = 0.238210; Qcorr = 0.252335; Hcorr = 0.253279; Gcorr = 0.196648;

··-·	20 - 10, 2 -011	0.202000, 110011	0.2002/2,0
С	-0.80180042	-0.44855652	0.11302305
С	-2.09095800	-0.46849275	0.63382851
С	0.29230456	-0.46642399	0.95295794
С	-2.32782714	-0.50605768	1.99472704
С	0.07018894	-0.50456802	2.32831249
С	-1.22282172	-0.52388059	2.84048026
Η	1.30067350	-0.45114258	0.55816555
Η	-3.33687329	-0.52048256	2.38562938
Η	0.91311290	-0.51902088	3.00673471
Η	-1.37191188	-0.55301894	3.91194368
С	-0.91803067	-0.40751633	-1.38624940
С	-0.30542873	-1.64671364	-2.04863452

С	-0.31517435	0.87131513	-1.97846864
Η	-0.76448668	1.76108532	-1.53626780
Η	0.75740789	0.89215697	-1.78351229
Η	-0.46831321	0.90250472	-3.05765186
Η	0.76749149	-1.66958622	-1.85581020
Η	-0.45958430	-1.61957430	-3.12780121
Η	-0.74711582	-2.56306468	-1.65582957
С	-2.43280100	-0.40985419	-1.52000413
Ν	-3.06003220	-0.44449306	-0.39896973
С	-3.12451326	-0.37502834	-2.82906069
Η	-2.83089386	-1.23610265	-3.43270543
Η	-4.20431216	-0.37947317	-2.69840783
Η	-2.83233930	0.51746437	-3.38591873
0	-5.85766623	-0.41418842	-0.04912332
Η	-6.09970645	0.51291652	-0.05214361
Η	-4.88460939	-0.41701630	-0.17187488

A; E_B2PLYP-D3BJ = -1112.01935430200; E_wB97XD = -1112.535393960; ZPE = 0.400747; Qcorr = 0.425214; Hcorr = 0.426159; Gcorr = 0.345503;

0.10	10747, QC011 - 0	J.423214, IICOII	-0.420139, C
С	-0.28401159	-1.76846912	-2.72373209
С	-1.38399055	-2.35411730	-2.09846441
С	0.31036434	-2.40144385	-3.81304531
С	-1.87634925	-3.56319501	-2.55572566
С	-0.19629220	-3.60320906	-4.27886294
С	-1.28468441	-4.18676300	-3.64804915
Η	-1.83844011	-1.86372992	-1.24847229
Η	1.16616871	-1.95414577	-4.30027722
Η	-2.72085306	-4.02323780	-2.06067530
Η	0.26920811	-4.09037430	-5.12520061
Η	-1.67104908	-5.13269620	-4.00412488
С	0.22761581	-0.46976778	-2.21460418
0	-0.43341000	0.24854454	-1.47467802
С	1.54633884	-0.09103742	-2.62552545
С	2.66617364	0.18954966	-2.98174325
С	3.96921168	0.45179555	-3.42223987
С	4.69042757	1.63493076	-3.47191181
Η	4.33074593	2.59837085	-3.15007831
С	5.94297574	1.32807151	-4.02820041
Η	6.75296947	2.01262518	-4.21777432
С	5.95067431	-0.02870939	-4.29246214
Η	6.72704015	-0.65364957	-4.70125816
Ν	4.75840397	-0.54655048	-3.93972057
Η	4.49179753	-1.53874602	-3.90703565
С	2.69238715	-5.28163612	-3.38479813
С	3.23771078	-4.28173664	-4.18286609
С	2.10567226	-6.39117823	-3.95561093
С	3.21349375	-4.35644052	-5.56227419
С	2.07040313	-6.47982865	-5.34593484
С	2.61787487	-5.47536011	-6.13696815
Η	1.67395817	-7.17268979	-3.34259915
Н	3.63536956	-3.56856666	-6.17252050
Η	1.60898958	-7.33788548	-5.81682650

Η	2.57706008	-5.56346151	-7.21476451
С	2.88784020	-4.87464713	-1.95052347
С	3.85622741	-5.82463329	-1.23046073
С	1.57863960	-4.76097646	-1.16653549
Η	0.89830183	-4.04633181	-1.62709043
Η	1.08749048	-5.73386685	-1.13145652
Η	1.77634406	-4.44091885	-0.14291882
Η	3.41329302	-6.81953256	-1.17710800
Η	4.04765224	-5.47943091	-0.21405816
Η	4.80648558	-5.89707384	-1.76049278
С	3.54496069	-3.51975887	-2.16408254
Ν	3.75956462	-3.22572826	-3.39728534
С	3.89311920	-2.62060889	-1.03928428
Н	4.46755253	-3.15719129	-0.28256560
Η	4.45922594	-1.75688239	-1.37886069
Η	2.97619701	-2.27346716	-0.55656981

A'; E_B2PLYP-D3BJ = -1188.45194524010; E_wB97XD = -1188.993922800; ZPE = 0.425365; Qcorr = 0.453345; Hcorr = 0.454289; Gcorr = 0.364344;

0.12	23303, 20011 - 0	5. 1555 15, 110011	=0.151207, C
С	-0.69637243	-1.97106720	-3.43067434
С	-1.50601581	-2.96895052	-2.88960812
С	-0.86040162	-1.59516281	-4.76126094
С	-2.45904922	-3.58840985	-3.67721449
С	-1.82459717	-2.20753844	-5.54410675
С	-2.62011262	-3.20731474	-5.00418307
Η	-1.37644740	-3.26092665	-1.85694888
Η	-0.23801041	-0.81709815	-5.18184927
Η	-3.07826178	-4.37038422	-3.25888821
Η	-1.94844402	-1.90943874	-6.57639217
Η	-3.36731245	-3.69328876	-5.61769085
С	0.32746312	-1.32352471	-2.57319032
0	0.35983734	-1.48042531	-1.35813016
С	1.30660905	-0.50123668	-3.21845236
С	2.18120155	0.14496521	-3.74568582
С	3.19957377	0.88769218	-4.35357651
С	4.28136797	1.54539796	-3.78682286
Η	4.50289255	1.58262201	-2.73296799
С	5.00318945	2.13324855	-4.83745542
Η	5.90263047	2.72068678	-4.75768977
С	4.34410626	1.81855529	-6.01054008
Η	4.57572946	2.07580132	-7.03041779
Ν	3.26256269	1.07270655	-5.71344177
Η	2.59400873	0.67886009	-6.37630004
С	1.86112739	-4.75206357	-3.63490533
С	2.69843636	-3.73690130	-4.08440527
С	0.87511653	-5.26673666	-4.45169167
С	2.58505872	-3.22069553	-5.36283401
С	0.74826273	-4.75376882	-5.73982845
С	1.59809582	-3.74834969	-6.18939628
Η	0.21455570	-6.05132473	-4.10360642
Η	3.24167202	-2.43233677	-5.70802051
Η	-0.02052119	-5.13716214	-6.39767563

Η	1.48506060	-3.36950695	-7.19748386
С	2.28449354	-5.09986426	-2.23501842
С	2.83786572	-6.52960126	-2.15914806
С	1.16920186	-4.90818624	-1.20490349
Η	0.81132641	-3.87961971	-1.19651647
Η	0.33233935	-5.56560076	-1.44377342
Η	1.52631419	-5.15971768	-0.20545725
Η	2.04258425	-7.24002251	-2.38726085
Η	3.21065789	-6.74321604	-1.15676989
Η	3.64935178	-6.67823747	-2.87246333
С	3.40357372	-4.08406194	-2.05747887
Ν	3.63060398	-3.35130626	-3.08861871
С	4.16680442	-3.96170227	-0.79274447
Η	4.62190555	-4.91816964	-0.52776849
Η	4.94399115	-3.20561317	-0.87641662
Η	3.49448598	-3.69337495	0.02511593
0	1.31550253	-0.22958154	-7.40219179
Η	0.46599155	0.17433644	-7.21002345
Η	1.29591626	-1.06308114	-6.92451725

TS_{AB}; E_B2PLYP-D3BJ = -1111.98232796550; E_wB97XD = -1112.496715910; ZPE = 0.400279; Qcorr = 0.424006; Hcorr = 0.424950; Gcorr = 0.346395; ***imaginary frequency*** -367.8574 cm⁻¹:

imaginary frequ	ency**** -367.8	5/4 cm;
-0.24247406	-2.17677778	-3.32526756
-0.82882331	-3.35930998	-2.88234891
-0.42600929	-1.76872005	-4.64337913
-1.57782771	-4.13260274	-3.75398729
-1.19682550	-2.53075787	-5.50641006
-1.76648932	-3.71708005	-5.06541315
-0.67450613	-3.68179376	-1.86122037
0.03164143	-0.85176740	-4.99092033
-2.01222107	-5.06228822	-3.41122556
-1.34581318	-2.20342463	-6.52675471
-2.35494137	-4.32010023	-5.74438922
0.63230523	-1.41290059	-2.38663341
0.40808282	-1.41108719	-1.16925116
1.73248496	-0.73745413	-2.96072048
2.93786699	-0.93801384	-3.23838710
4.17584416	-0.38435449	-3.69117621
4.74068722	0.83778909	-3.39311528
4.32518324	1.56521171	-2.71532430
5.93906559	0.93742134	-4.13724350
6.63215729	1.76243049	-4.14045655
6.06948773	-0.22775293	-4.85421091
6.84002971	-0.55588474	-5.53079048
4.99948935	-1.01638459	-4.58033520
4.83677509	-1.93486991	-4.95737390
2.62111810	-4.96398163	-2.75138787
2.78801681	-3.84481501	-3.55434874
2.02025450	-6.09726297	-3.25997053
2.37765679	-3.80752477	-4.87134810
1.59036370	-6.07807755	-4.58434790
	$\begin{array}{l} \text{Intraginary frequ}\\ &-0.24247406\\ &-0.82882331\\ &-0.42600929\\ &-1.57782771\\ &-1.19682550\\ &-1.76648932\\ &-0.67450613\\ &0.03164143\\ &-2.01222107\\ &-1.34581318\\ &-2.35494137\\ &0.63230523\\ &0.40808282\\ &1.73248496\\ &2.93786699\\ &4.17584416\\ &4.74068722\\ &4.32518324\\ &5.93906559\\ &6.63215729\\ &6.06948773\\ &6.84002971\\ &4.99948935\\ &4.83677509\\ &2.62111810\\ &2.78801681\\ &2.02025450\\ &2.37765679\\ &1.59036370\\ \end{array}$	Imaginary frequency -367.8 -0.24247406 -2.17677778 -0.82882331 -3.35930998 -0.42600929 -1.76872005 -1.57782771 -4.13260274 -1.19682550 -2.53075787 -1.76648932 -3.71708005 -0.67450613 -3.68179376 0.03164143 -0.85176740 -2.01222107 -5.06228822 -1.34581318 -2.20342463 -2.35494137 -4.32010023 0.63230523 -1.41290059 0.40808282 -1.41108719 1.73248496 -0.73745413 2.93786699 -0.93801384 4.17584416 -0.38435449 4.74068722 0.83778909 4.32518324 1.56521171 5.93906559 0.93742134 6.63215729 1.76243049 6.06948773 -0.22775293 6.84002971 -0.55588474 4.99948935 -1.01638459 4.83677509 -1.93486991 2.62111810 -4.96398163 2.78801681 -3.80752477 1.59036370 -6.07807755

С	1.76769493	-4.94911411	-5.37829128
Η	1.87701899	-6.97718409	-2.64564177
Η	2.50655485	-2.91875121	-5.47461365
Η	1.10744045	-6.95137310	-5.00244254
Η	1.41938267	-4.95667610	-6.40246870
С	3.16855329	-4.64319967	-1.38632120
С	4.36116136	-5.53292343	-1.01833733
С	2.08889513	-4.70856409	-0.29916830
Η	1.24905845	-4.05656229	-0.53965046
Η	1.72319466	-5.73223079	-0.21624957
Η	2.50001844	-4.40972316	0.66534177
Η	4.02975256	-6.56913922	-0.95046432
Η	4.77332428	-5.23955597	-0.05268687
Η	5.14805569	-5.46874476	-1.77021754
С	3.60813822	-3.20754564	-1.61133849
Ν	3.39958309	-2.80394538	-2.81397931
С	4.16204621	-2.34330572	-0.54822791
Η	4.93665725	-2.87200293	0.00782857
Η	4.56815546	-1.42115756	-0.95679232
Η	3.36697453	-2.09700486	0.15967517

 $TS_{A'B'}$; E_B2PLYP-D3BJ = -1188.41872381550; E_wB97XD = -1188.957993700; ZPE = 0.424367; Qcorr = 0.451501; Hcorr = 0.452446; Gcorr = 0.365401; ***imaginary frequency*** -329.4695 cm⁻¹:

ጥጥጥ	imaginary frequ	ency*** -329.4	695 cm ;
С	-0.92582631	-2.05738123	-4.08071533
С	-1.57332552	-3.23602949	-3.72042162
С	-1.06294832	-1.56044863	-5.37376348
С	-2.34330948	-3.91559028	-4.64975553
С	-1.85326037	-2.22911448	-6.29391397
С	-2.48803652	-3.41037665	-5.93507565
Η	-1.44944114	-3.62855014	-2.71975344
Η	-0.55379445	-0.64849435	-5.65748869
Η	-2.82787338	-4.84251101	-4.37337034
Η	-1.96686662	-1.83391276	-7.29447877
Н	-3.09220021	-3.94089095	-6.65925524
С	-0.03916704	-1.39169867	-3.08472115
0	-0.24559035	-1.49640115	-1.87446268
С	1.07974982	-0.68065800	-3.59944087
С	2.28099089	-0.81781016	-3.89564382
С	3.48901300	-0.26803286	-4.43072801
С	4.78759461	-0.72733325	-4.47455860
Η	5.12857966	-1.67261775	-4.08971349
С	5.56116144	0.27007045	-5.11172727
Η	6.61913149	0.23538507	-5.31317935
С	4.71209325	1.30117906	-5.43426463
Η	4.89920259	2.24009298	-5.92723605
Ν	3.46299001	0.96865147	-5.02142931
Η	2.62451435	1.53029818	-5.12348790
С	1.92108061	-4.86830874	-3.46113752
С	2.13940277	-3.74335275	-4.24399288
С	1.25129135	-5.95702285	-3.98131976
С	1.71178910	-3.66023070	-5.55401400

С	0.80412857	-5.88909385	-5.29827253
С	1.03240342	-4.75601324	-6.07305438
Η	1.06725483	-6.83898257	-3.38079165
Η	1.87927506	-2.76824136	-6.14262648
Η	0.26699787	-6.72587898	-5.72492084
Η	0.66851685	-4.72353476	-7.09140187
С	2.49933669	-4.60296192	-2.09724121
С	3.66105025	-5.54799789	-1.76885605
С	1.43305714	-4.65679510	-0.99747488
Η	0.60697807	-3.98025360	-1.21661840
Η	1.04151692	-5.67187686	-0.92551943
Η	1.86336633	-4.38546053	-0.03315182
Η	3.29096562	-6.57215193	-1.71892717
Н	4.09960379	-5.29321699	-0.80371053
Н	4.43862585	-5.49691990	-2.53148266
С	3.00122839	-3.18305532	-2.30107390
Ν	2.81012366	-2.74597233	-3.49414950
С	3.60913138	-2.36902907	-1.22758181
Н	4.41565216	-2.92093910	-0.74277217
Н	3.99227441	-1.42799564	-1.61486470
Η	2.85739433	-2.16115538	-0.46274927
0	0.66089955	2.06161600	-5.02412146
Η	0.62327696	2.73648902	-4.34313201
Η	0.57696243	1.22649155	-4.54053905

B, E_B2PLYP-D3BJ = -1111.99775568960; E_wB97XD = -1112.518461660; ZPE = 0.402766; Qcorr = 0.426275; Hcorr = 0.427220; Gcorr = 0.349205;

×			o, otom o.e
С	-0.26805383	-1.96672219	-3.18546970
С	-0.80215580	-3.18874147	-2.78185315
С	-0.49733658	-1.51759280	-4.48343466
С	-1.53200964	-3.96132238	-3.67109998
С	-1.24819007	-2.28071968	-5.36453643
С	-1.75736816	-3.50816918	-4.96423749
Η	-0.61582068	-3.54549613	-1.77719461
Η	-0.08706533	-0.56889005	-4.80290648
Η	-1.92205638	-4.92032515	-3.35613486
Η	-1.42875814	-1.92027297	-6.36873916
Η	-2.32936605	-4.11048042	-5.65780778
С	0.64820748	-1.25034679	-2.24007774
0	0.38124399	-1.22091579	-1.01745353
С	1.78367307	-0.65736850	-2.81462140
С	2.94152670	-1.24708035	-3.04407570
С	4.13233957	-0.70406248	-3.69399219
С	4.30981365	0.48603947	-4.36592151
Η	3.54612015	1.22864545	-4.52950745
С	5.65936229	0.53580056	-4.79349704
Η	6.13275717	1.32867497	-5.34947186
С	6.26322587	-0.62289632	-4.37533684
Η	7.27145231	-0.98047345	-4.49575076
Ν	5.33154566	-1.36414546	-3.71277998
Η	5.50900689	-2.26017784	-3.29122927
С	2.72274099	-4.90564491	-2.85830740

С	2.66941178	-3.71403135	-3.55373559
С	2.32793160	-6.07319049	-3.47985905
С	2.24409256	-3.60545590	-4.85881445
С	1.88550561	-5.99863005	-4.79656161
С	1.84583910	-4.78418241	-5.47593475
Η	2.35275214	-7.01912927	-2.95518737
Η	2.20411707	-2.65255353	-5.36698149
Η	1.56377042	-6.89916029	-5.30211462
Η	1.49421794	-4.75442849	-6.49811511
С	3.21337529	-4.63059126	-1.46230224
С	4.55373289	-5.32048438	-1.17709447
С	2.16772027	-4.99712855	-0.39941599
Η	1.22958941	-4.47035255	-0.57642044
Η	1.98238602	-6.06967374	-0.44423877
Η	2.53372075	-4.74655762	0.59574160
Η	4.41396605	-6.39854348	-1.24671025
Η	4.90172966	-5.07900314	-0.17339114
Η	5.31229928	-5.01828746	-1.89919738
С	3.38706857	-3.13381020	-1.50690430
Ν	3.07795458	-2.66719508	-2.67587992
С	3.81712142	-2.30428361	-0.37369649
Η	4.70933170	-2.73940682	0.07709628
Η	4.00704239	-1.27576020	-0.66647913
Η	3.03224916	-2.32076768	0.38602711

C; E_B2PLYP-D3BJ = -1112.00141144090; E_wB97XD = -1112.522084410; ZPE =

0.402523; Qcorr = 0.425361; Hcorr = 0.426305; Gcorr = 0.349576;

С	-0.32274145	-1.98491401	-3.19624786
С	-0.83278436	-3.21540087	-2.78739007
С	-0.56079411	-1.54543331	-4.49584883
С	-1.54793084	-4.00546749	-3.67323678
С	-1.29736151	-2.32625954	-5.37344438
С	-1.78257172	-3.56171313	-4.96797583
Η	-0.63861254	-3.56449473	-1.78147888
Η	-0.16851838	-0.59050980	-4.81934666
Η	-1.91910829	-4.97067935	-3.35451886
Η	-1.48521976	-1.97346964	-6.37902975
Η	-2.34302598	-4.17766070	-5.65898700
С	0.57844976	-1.24640093	-2.25381222
0	0.30802268	-1.21341789	-1.03291625
С	1.70788026	-0.63625645	-2.82722479
С	2.87479920	-1.21601203	-3.04014131
С	4.07550050	-0.66785715	-3.65438501
С	5.32860545	-1.21560456	-3.82876481
Η	5.63307922	-2.20181853	-3.51670154
С	6.12557364	-0.24179825	-4.48460772
Η	7.15907173	-0.33922222	-4.77445732
С	5.33454959	0.86050356	-4.68572035
Η	5.54964173	1.80994105	-5.14565594
Ν	4.09821300	0.58948262	-4.18047493
Η	3.30808767	1.21222753	-4.18417201
С	2.74168421	-4.87538967	-2.85947292

С	2.64990704	-3.68402607	-3.55145706
С	2.37601213	-6.05229328	-3.48144472
С	2.21420363	-3.58513383	-4.85394228
С	1.92374974	-5.98755987	-4.79533545
С	1.84564469	-4.77312992	-5.47151119
Η	2.43177807	-6.99853073	-2.95966928
Η	2.14584194	-2.63283869	-5.36007599
Η	1.62552896	-6.89582885	-5.30147818
Η	1.48824291	-4.75114338	-6.49190627
С	3.23236794	-4.58909703	-1.46553380
С	4.57920756	-5.26133757	-1.17411763
С	2.18806381	-4.96547873	-0.40348170
Η	1.24312056	-4.45274948	-0.58613314
Η	2.01784036	-6.04069059	-0.44414017
Н	2.54716345	-4.70512246	0.59168704
Н	4.45228190	-6.34143372	-1.23730519
Н	4.92235606	-5.01028881	-0.17102821
Н	5.33615517	-4.95530049	-1.89600798
С	3.37754931	-3.08877049	-1.51342781
Ν	3.03834730	-2.62957749	-2.67545494
С	3.80448000	-2.24871451	-0.38663169
Н	4.71019841	-2.66528658	0.05443983
Η	3.97205250	-1.21782325	-0.68474119
Η	3.02915755	-2.27843654	0.38253401

C'; E_B2PLYP-D3BJ = -1188.44050469770; E_wB97XD = -1188.987126310; ZPE = 0.427041; Qcorr = 0.453625; Hcorr = 0.454569; Gcorr = 0.369200;

С	-1.03438362	-1.88580381	-3.98159315
С	-1.55884878	-3.10856812	-3.56926662
С	-1.26339901	-1.44558617	-5.28265346
С	-2.28207163	-3.89183219	-4.45450517
С	-2.00932292	-2.21865994	-6.15865605
С	-2.50964634	-3.44729963	-5.75020943
Н	-1.36975426	-3.45697025	-2.56217650
Н	-0.85760385	-0.49674709	-5.60780011
Н	-2.66512667	-4.85197996	-4.13477708
Η	-2.19176898	-1.86638267	-7.16533047
Η	-3.07644822	-4.05806966	-6.44062916
С	-0.12854281	-1.15026363	-3.04392997
0	-0.37977731	-1.12494008	-1.82482038
С	0.99542748	-0.51760038	-3.63020616
С	2.16225958	-1.10703894	-3.83168058
С	3.37292661	-0.58097312	-4.44814777
С	4.62170249	-1.15258043	-4.57973247
Η	4.90688149	-2.13088661	-4.22697731
С	5.44397493	-0.21550896	-5.25491071
Η	6.48104031	-0.33760792	-5.52174678
С	4.67082943	0.88912319	-5.50987453
Η	4.90852461	1.81753850	-6.00097647
Ν	3.42185394	0.65730490	-5.01959704
Η	2.63704124	1.29640841	-5.06661277
С	2.02871321	-4.76330717	-3.61384320

С	1.93635570	-3.57871480	-4.31714382
С	1.67147225	-5.94711697	-4.22764267
С	1.50802492	-3.49265507	-5.62298950
С	1.22720486	-5.89569518	-5.54481680
С	1.14803698	-4.68756191	-6.23216158
Η	1.72763303	-6.88845795	-3.69715699
Η	1.43909373	-2.54516089	-6.13802402
Η	0.93595301	-6.80958016	-6.04486522
Η	0.79697472	-4.67607395	-7.25491144
С	2.50756999	-4.46255159	-2.21885082
С	3.85613039	-5.12392192	-1.91057910
С	1.45653123	-4.83631310	-1.16264544
Η	0.51050871	-4.32983973	-1.35665044
Η	1.29202967	-5.91261075	-1.19723914
Η	1.80611510	-4.56731522	-0.16642038
Η	3.73628426	-6.20531467	-1.96429561
Η	4.18971927	-4.86059239	-0.90738475
Η	4.61673672	-4.81999493	-2.62955793
С	2.64726678	-2.96213834	-2.27878575
Ν	2.31438980	-2.51499453	-3.44747497
С	3.07279248	-2.11188623	-1.15957466
Η	4.01147006	-2.49267656	-0.75543540
Η	3.18711588	-1.07289435	-1.45425610
Η	2.32883506	-2.18246299	-0.36308677
0	0.75283696	2.09520021	-4.85164452
Η	0.87132237	2.74950035	-4.16041569
Η	0.72438549	1.22871189	-4.37393088

TS_{CD}; E_B2PLYP-D3BJ = -1111.96263840720; E_wB97XD = -1112.482063940; ZPE = 0.397576; Qcorr = 0.420900; Hcorr = 0.421844; Gcorr = 0.342439; ***imaginary frequency*** -1766.3307 cm⁻¹;

•••	'infaginary nequ	-1700.	5507 cm ,
С	-0.57937248	-1.81068684	-3.59900391
С	-1.70457337	-2.55058961	-3.24301747
С	-0.40064368	-1.43452260	-4.92874814
С	-2.63323352	-2.91480505	-4.20331584
С	-1.33451057	-1.79176726	-5.88770418
С	-2.44987187	-2.53490595	-5.52671332
Η	-1.84033457	-2.84925660	-2.21236091
Η	0.47059952	-0.85842280	-5.21175129
Η	-3.50018423	-3.49768673	-3.92196193
Η	-1.19151998	-1.49206069	-6.91729594
Η	-3.17647150	-2.81899411	-6.27658664
С	0.43957774	-1.47694713	-2.55815951
0	0.16929691	-1.59846687	-1.35862676
С	1.71276684	-0.98201652	-3.00489324
С	2.88134987	-1.60630496	-2.99030807
С	4.00345898	-0.82894567	-3.52308943
С	5.37600904	-0.90463782	-3.63446322
Η	6.00711202	-1.72990800	-3.34272881
С	5.77724520	0.34182706	-4.18477222
Η	6.78362529	0.64984281	-4.42597443
С	4.62616551	1.09100274	-4.36981397

Η	4.52008040	2.08424090	-4.77764766
Ν	3.54948780	0.36431002	-3.97576515
Η	2.31894352	0.17116530	-3.63899605
С	3.01069715	-5.23283571	-2.61824723
С	2.67001072	-4.09365645	-3.32165610
С	2.70013411	-6.47144902	-3.14140287
С	2.03591313	-4.10678768	-4.54368457
С	2.05175291	-6.52165852	-4.37148356
С	1.72692388	-5.35828563	-5.06230297
Н	2.95366174	-7.37915046	-2.60994463
Η	1.79032350	-3.19534279	-5.06925736
Н	1.79721427	-7.48146926	-4.80042564
Η	1.22592742	-5.42557141	-6.01826940
С	3.69556942	-4.82991083	-1.34025605
С	5.14720866	-5.32510267	-1.27040161
С	2.90562694	-5.27779206	-0.10189515
Η	1.89164305	-4.87897785	-0.11589672
Η	2.85366578	-6.36585636	-0.09970968
Η	3.40505699	-4.95225448	0.80961824
Η	5.14442173	-6.41427078	-1.25362280
Η	5.62734093	-4.96256185	-0.36206291
Η	5.71946312	-4.98868422	-2.13453572
С	3.67256486	-3.32958504	-1.45905370
Ν	3.09618071	-2.96324149	-2.56217321
С	4.24190413	-2.39545031	-0.48085706
Η	5.32314677	-2.35473721	-0.63971229
Η	3.83420788	-1.39372183	-0.59022056
Η	4.07421174	-2.76590663	0.52880698

 $\label{eq:starsest} \begin{array}{l} \textbf{TS}_{\textbf{C'D'}}; \ \textbf{E}_\textbf{B2PLYP-D3BJ} = -1188.43259350480; \ \textbf{E}_w\textbf{B97XD} = -1188.977826450; \ \textbf{ZPE} = 0.422564; \ \textbf{Qcorr} = 0.448277; \ \textbf{Hcorr} = 0.449221; \ \textbf{Gcorr} = 0.366318; \\ *** \text{imaginary frequency} *** -1363.7184 \ \text{cm}^{-1}; \end{array}$

		-	,
С	-1.03501429	-1.81603058	-4.03693988
С	-1.59161042	-3.01014821	-3.58628680
С	-1.23518252	-1.41276437	-5.35471347
С	-2.32553899	-3.80326589	-4.45286266
С	-1.99784531	-2.19149169	-6.20941246
С	-2.53232555	-3.39255778	-5.76323963
Η	-1.41956383	-3.32792967	-2.56630959
Η	-0.79552567	-0.48968457	-5.70912501
Η	-2.73443506	-4.74344882	-4.10761187
Η	-2.16269126	-1.86954012	-7.22891656
Η	-3.10870176	-4.01127857	-6.43840767
С	-0.14062053	-1.05020648	-3.12319685
0	-0.35407027	-1.01019464	-1.91380009
С	0.99618602	-0.37686498	-3.73456513
С	2.15151068	-1.00737350	-3.91237596
С	3.36856513	-0.48895717	-4.51517506
С	4.60208034	-1.08559159	-4.68147471
Η	4.86745950	-2.08462915	-4.37390664
С	5.43499204	-0.14010726	-5.32726605
Η	6.46596770	-0.27283350	-5.61197738

С	4.68056434	0.99151442	-5.52754265
Η	4.93733986	1.93383113	-5.98162631
Ν	3.43362940	0.77046942	-5.03588530
Η	2.64101145	1.42337920	-5.01700697
С	2.02235455	-4.65440510	-3.67080789
С	1.92136010	-3.47703088	-4.38463345
С	1.69363613	-5.84793635	-4.28148043
С	1.51303047	-3.40580704	-5.69744914
С	1.26857903	-5.81245263	-5.60538161
С	1.18076504	-4.61070529	-6.30268180
Η	1.75769555	-6.78451235	-3.74366989
Η	1.44054844	-2.46370844	-6.22166868
Η	0.99979124	-6.73427755	-6.10336259
Η	0.84594397	-4.61200600	-7.33086722
С	2.47816491	-4.33798623	-2.27188729
С	3.83356552	-4.97612914	-1.94246224
С	1.42011342	-4.72077364	-1.22563572
Η	0.46964173	-4.22781987	-1.43179770
Η	1.27081170	-5.79921442	-1.25854203
Η	1.75558077	-4.44341671	-0.22695618
Η	3.73045941	-6.05928551	-1.99336803
Η	4.14867740	-4.70315702	-0.93596680
Η	4.59860251	-4.66328061	-2.65277316
С	2.59679483	-2.83729275	-2.33738313
Ν	2.27032373	-2.40245160	-3.51429270
С	2.99572103	-1.97399276	-1.21999085
Η	3.93199799	-2.34199209	-0.79896597
Η	3.10204077	-0.93544483	-1.51894141
Η	2.23987379	-2.04969673	-0.43494184
0	0.94379008	2.04796959	-4.67496422
Η	1.02923677	2.63786020	-3.92383671
Η	0.89720255	0.88083301	-4.17021697

D; E_B2PLYP-D3BJ = -1112.02955619330; E_wB97XD = -1112.545101630; ZPE = 0.402605; Qcorr = 0.426022; Hcorr = 0.426966; Gcorr = 0.348071;

С	-0.98454511	-1.92108123	-3.76706205
С	-2.10237812	-2.28537590	-3.01816938
С	-1.16199286	-1.17713637	-4.93206324
С	-3.37132026	-1.90118743	-3.41664230
С	-2.43475861	-0.80880424	-5.34057353
С	-3.54022169	-1.16411234	-4.58149390
Η	-1.96879967	-2.86400666	-2.11411568
Η	-0.31169027	-0.90106155	-5.54080135
Η	-4.23056241	-2.17744532	-2.81995705
Η	-2.56221959	-0.24409268	-6.25452879
Η	-4.53221598	-0.86888148	-4.89736753
С	0.36614176	-2.37989676	-3.30588688
0	0.44149276	-3.41300073	-2.63190961
С	1.49717143	-1.56234297	-3.67094102
С	2.80782310	-1.84242706	-3.43224582
С	3.92918324	-1.04973389	-3.75915535
С	5.29113155	-1.37161072	-3.54271881

Η	5.68100014	-2.27300018	-3.09374064
С	6.01211465	-0.29653664	-4.02857482
Η	7.08446552	-0.17452904	-4.03930022
С	5.05169918	0.61840710	-4.51374437
Η	5.24903912	1.58079007	-4.96750285
Ν	3.80533365	0.18067394	-4.36017162
Η	1.30637174	-0.62439796	-4.16754259
С	3.65259063	-5.30792377	-2.69081664
С	3.27705026	-4.30605315	-3.56378996
С	3.84645569	-6.58692947	-3.17159441
С	3.07728999	-4.49387024	-4.91280504
С	3.65305867	-6.81436890	-4.53032433
С	3.27463045	-5.78486721	-5.38696947
Η	4.14039260	-7.39125724	-2.51037575
Η	2.78247273	-3.68411462	-5.56550763
Η	3.79896023	-7.80898558	-4.92956206
Η	3.13106230	-5.99011606	-6.43890436
С	3.77311722	-4.72951428	-1.30678907
С	5.20614210	-4.81707151	-0.76183571
С	2.77644014	-5.36750119	-0.32877977
Η	1.75164080	-5.25879671	-0.68223016
Η	3.00708362	-6.42867525	-0.24403229
Η	2.86487310	-4.91250555	0.65694029
Η	5.47649001	-5.86733361	-0.66010644
Η	5.26891820	-4.34305814	0.21705540
Η	5.91395857	-4.33618482	-1.43676314
С	3.41436086	-3.28924004	-1.56232465
Ν	3.15190492	-3.10084845	-2.81572893
С	3.38365691	-2.23193750	-0.54551582
Η	4.41328615	-2.00660351	-0.25558642
Η	2.90854445	-1.32431497	-0.90693824
Η	2.87092524	-2.59579581	0.34443128

D'; E_B2PLYP-D3BJ = -1188.46818971560; E_wB97XD = -1189.010207930; ZPE = 0.427453; Qcorr = 0.453787; Hcorr = 0.454732; Gcorr = 0.368959;

С	-3.51535888	0.85647798	-1.27748881
С	-4.60294505	0.39338236	-0.53860581
С	-3.73749021	1.75152831	-2.32314166
С	-5.88535289	0.82697182	-0.82794733
С	-5.02420891	2.17114491	-2.62348379
С	-6.09876039	1.71559884	-1.87361692
Η	-4.43495165	-0.30201710	0.27253739
Η	-2.91394360	2.11084961	-2.92554686
Η	-6.72020921	0.47181497	-0.23851036
Η	-5.18650662	2.85533218	-3.44561739
Η	-7.10152021	2.05060072	-2.10423691
С	-2.14888962	0.34649282	-0.93301215
0	-2.04363666	-0.75060688	-0.37826936
С	-1.03112176	1.20109532	-1.26481385
С	0.28599766	0.91725562	-1.09994507
С	1.38863629	1.73590447	-1.44060340
С	2.75531403	1.45939711	-1.21869934

Η	3.16778670	0.57604192	-0.75481628
С	3.44884396	2.55300514	-1.71182492
Η	4.51700616	2.70548734	-1.71777806
С	2.47023474	3.43410946	-2.20991146
Н	2.63421793	4.39424076	-2.68060849
Ν	1.23604144	2.95646848	-2.05240997
Н	-0.13665281	3.75347612	-2.88098734
С	1.23504219	-2.55627604	-0.55575961
С	0.88451586	-1.50381751	-1.37862346
С	1.50058233	-3.79065041	-1.11265809
С	0.77507312	-1.59787375	-2.74760528
С	1.39768887	-3.92401560	-2.49372634
С	1.04121896	-2.84564367	-3.29798823
Η	1.77895072	-4.63252132	-0.49274122
Η	0.49716597	-0.75095546	-3.35947818
Η	1.59784656	-4.88302975	-2.95220508
Η	0.96901512	-2.97826160	-4.36871406
С	1.26305092	-2.07222214	0.86893621
С	2.68255644	-2.13374496	1.45560748
С	0.26644363	-2.80987825	1.77156158
Η	-0.74668221	-2.74440779	1.37678713
Η	0.55548976	-3.85870514	1.82554583
Η	0.28500297	-2.39103908	2.77716261
Η	3.00119033	-3.17503742	1.47903257
Η	2.69344307	-1.74280286	2.47220838
Η	3.38574382	-1.56584752	0.84654094
С	0.84758497	-0.63590959	0.69600902
Ν	0.66660401	-0.36242917	-0.55608926
С	0.61861708	0.31768060	1.78648635
Η	1.35103925	0.16864470	2.57745588
Η	0.63465535	1.34892304	1.44412779
Η	-0.36838374	0.10086587	2.20692293
0	-0.82894539	4.22945856	-3.40137839
Η	-1.63505382	4.13073215	-2.89240180
Η	-1.24944862	2.17279357	-1.67518471
O H H	-0.82894539 -1.63505382 -1.24944862	4.22945856 4.13073215 2.17279357	-3.4 -2.3 -1.4

E; E_B2PLYP-D3BJ = -1112.02828102590; E_wB97XD = -1112.543806900; ZPE = 0.402640; Qcorr = 0.426086; Hcorr = 0.427031; Gcorr = 0.347705;

Qcc	orr = 0.426086; H	4 corr = 0.42703	31; Gcorr = 0.34
С	-3.58191744	1.17566194	-3.05094108
С	-4.71381790	0.91979411	-2.27862651
С	-3.72073672	1.88563072	-4.24207956
С	-5.95740799	1.37686766	-2.68015003
С	-4.96928264	2.32724765	-4.65279337
С	-6.08806032	2.07937719	-3.87092770
Η	-4.61053297	0.36731122	-1.35444039
Η	-2.86093065	2.07814334	-4.86938791
Η	-6.82671360	1.18383811	-2.06557995
Η	-5.06756013	2.86467873	-5.58657359
Η	-7.06056623	2.43125909	-4.18929471
С	-2.26102577	0.63969024	-2.58492281
0	-2.25100298	-0.37458829	-1.87843331
С	-1.08239396	1.36685321	-2.98503213

С	0.21162666	1.01335452	-2.74365902
С	1.37461523	1.72668844	-3.10742170
С	1.44816848	2.97217281	-3.77427096
Η	0.61795020	3.57593096	-4.10718990
С	2.79551321	3.24928125	-3.90398450
Η	3.24625405	4.11731656	-4.36100597
С	3.47214265	2.15887227	-3.31169178
Η	4.54314001	2.02963062	-3.22920127
Ν	2.63594015	1.24382890	-2.83319011
Η	-1.22597317	2.29647797	-3.51370542
С	0.82648654	-2.46961748	-1.87719094
С	0.52270432	-1.47565322	-2.78665512
С	0.93359677	-3.77494590	-2.31189639
С	0.31450821	-1.69713937	-4.12926601
С	0.72871690	-4.03672875	-3.66292842
С	0.42439918	-3.01466047	-4.55700753
Η	1.16975605	-4.57366418	-1.62136095
Η	0.07752629	-0.89278286	-4.81161803
Η	0.80716335	-5.05253312	-4.02616655
Η	0.27020341	-3.24661342	-5.60188152
С	0.98206546	-1.85185211	-0.51371742
С	2.40469221	-2.01915992	0.03980064
С	-0.05675587	-2.38547977	0.48262457
Η	-1.07143978	-2.22553143	0.11971557
Η	0.10454435	-3.45500108	0.61161104
Η	0.05768755	-1.89742338	1.44978096
Η	2.60201212	-3.08149969	0.17794638
Η	2.49843643	-1.51804842	1.00264544
Η	3.14514962	-1.61104591	-0.64760049
С	0.72028620	-0.40024904	-0.82260628
Ν	0.47434186	-0.24043066	-2.08174082
С	0.74252530	0.68924547	0.15952670
Η	1.76731106	0.81037211	0.51854571
Η	0.39277907	1.62979509	-0.25627254
Н	0.13227103	0.41207469	1.01956442

E'; E_B2PLYP-D3BJ = -1188.46808371630; E_wB97XD = -1189.010618770; ZPE =

0.427194; Qcorr = 0.453533 ; Hcorr =	= 0.454477; Gcorr = 0.369270;
--	-------------------------------

0.74	2/177, Qcon = 0	-55555, 110011	,, u
С	-3.49361199	0.78580631	-1.36682943
С	-4.58398915	0.36864444	-0.60518243
С	-3.71352164	1.59147427	-2.48250159
С	-5.86784971	0.76195749	-0.94207089
С	-5.00159205	1.96801872	-2.83082065
С	-6.07946595	1.56046797	-2.05845116
Η	-4.41747814	-0.25762212	0.26081058
Η	-2.88538956	1.90934035	-3.10143253
Η	-6.70543220	0.44500435	-0.33495672
Η	-5.16267071	2.58065979	-3.70782563
Η	-7.08336017	1.86253253	-2.32654468
С	-2.12570843	0.31795431	-0.97165305
0	-2.01640294	-0.75905212	-0.37836161
С	-1.01724822	1.18281617	-1.30474039

С	0.30201737	0.93130970	-1.09112910
С	1.39276951	1.77515766	-1.40907085
С	1.34633185	3.07992772	-1.94531827
Η	0.45922790	3.64332451	-2.19013148
С	2.66376918	3.48405850	-2.07606915
Η	3.02570410	4.43032694	-2.44809153
С	3.44597189	2.40511957	-1.61850083
Η	4.52558156	2.34889194	-1.58079713
Ν	2.69735084	1.38066668	-1.21403902
Η	3.64359336	-0.18043771	-1.24514704
С	1.30010086	-2.50478996	-0.40701835
С	0.97351263	-1.48238693	-1.27742032
С	1.65513080	-3.73778260	-0.91535907
С	0.96774952	-1.60862707	-2.64780815
С	1.66173743	-3.90160426	-2.29721621
С	1.32157324	-2.85528849	-3.14906233
Η	1.92237730	-4.55452536	-0.25814068
Η	0.70927736	-0.78406050	-3.29746926
Η	1.93635226	-4.85939539	-2.71803930
Η	1.33582330	-3.01124915	-4.21894417
С	1.21323660	-1.98971553	1.00419814
С	2.57573853	-2.02265765	1.71356996
С	0.15049945	-2.72025319	1.83665581
Η	-0.82412587	-2.68527993	1.35201199
Η	0.45116098	-3.76136020	1.94716637
Η	0.07272338	-2.27273767	2.82698385
Η	2.90902000	-3.05792938	1.77410845
Η	2.48841633	-1.62586320	2.72411705
Η	3.32071550	-1.44575518	1.16674129
С	0.79250713	-0.56506506	0.76591171
Ν	0.68348927	-0.32721314	-0.50097773
С	0.48439679	0.41461002	1.81342055
Η	1.10812852	0.24361826	2.68784553
Η	0.59324293	1.43812367	1.46288825
Η	-0.55710553	0.25797001	2.11159092
0	4.28403300	-0.92142446	-1.34394686
Η	3.77913348	-1.71149209	-1.14153400
Η	-1.24679502	2.13265628	-1.76231481

TS_{EF}; E_B2PLYP-D3BJ = -1112.01575315790; E_wB97XD = -1112.530148560; ZPE = 0.402808; Qcorr = 0.424895; Hcorr = 0.425839; Gcorr = 0.351200; ***imaginary frequency*** -191.2968 cm⁻¹;

			, ,
С	-3.26329301	2.60225479	-0.77241085
С	-4.22880448	3.09170285	0.10581987
С	-3.28079320	3.01907868	-2.10198310
С	-5.18437855	3.99235552	-0.33216013
С	-4.25030582	3.90602377	-2.54436476
С	-5.19862707	4.39906872	-1.66010949
Η	-4.21890031	2.76897009	1.13811702
Η	-2.55449460	2.63643332	-2.80604858
Η	-5.92015920	4.37746457	0.36129961
Η	-4.26411506	4.21201225	-3.58191981

Η	-5.94906879	5.09817515	-2.00508339
С	-2.26226586	1.61330490	-0.25855752
0	-2.56516851	0.90275729	0.70231121
С	-0.97537165	1.57135949	-0.91851398
С	0.04530463	0.73538139	-0.61516685
С	1.35795083	0.71244097	-1.17691746
С	2.01091374	1.54307368	-2.09729118
Η	1.57669764	2.36997480	-2.63751361
С	3.32751010	1.09084586	-2.14578582
Η	4.12862117	1.47784683	-2.75747870
С	3.40825595	0.00796232	-1.25223930
Η	4.26912040	-0.60551078	-1.02719614
Ν	2.22256733	-0.23077920	-0.69054937
Η	-0.77758464	2.29844948	-1.69182881
С	-0.06951944	-2.60731062	0.61455163
С	-0.68060245	-1.57008518	-0.06798652
С	-0.48770064	-3.90604183	0.40766018
С	-1.70312427	-1.76743252	-0.97151860
С	-1.52106763	-4.13512183	-0.49511995
С	-2.11702622	-3.07920222	-1.17498284
Η	-0.01794264	-4.72763846	0.93273771
Η	-2.16149807	-0.94631973	-1.50392456
Η	-1.86326437	-5.14576970	-0.67272803
Η	-2.91643689	-3.27673136	-1.87631944
С	0.99658028	-2.04866840	1.51785578
С	2.36646999	-2.70264335	1.33753321
С	0.56148464	-2.15505744	2.99262921
Η	-0.38642556	-1.64576635	3.16586154
Η	0.44115937	-3.20868652	3.24121413
Η	1.31982007	-1.72797793	3.64785492
Η	2.31197993	-3.73572063	1.68055222
Η	3.11558491	-2.18250116	1.93470731
Η	2.67439104	-2.68835640	0.29502829
С	0.98591688	-0.59230104	1.10561189
Ν	-0.06149898	-0.34504092	0.31467166
С	1.64531249	0.46211893	1.90684686
Η	2.66768486	0.17533596	2.13954352
Η	1.63259428	1.42856629	1.41231274
Η	1.09329154	0.54599996	2.84693332

TS_E (rotation of C(O)Ph group); E_B2PLYP-D3BJ = -1111.99300750870; E_wB97XD = -1112.510921320; ZPE = 0.401800; Qcorr = 0.424533; Hcorr = 0.425477; Gcorr = 0.348614; ***imaginary frequency*** -95.7179 cm⁻¹;

	mugmury negu	eney 23.71	, , ,
С	-3.44713574	1.26138009	-1.30777863
С	-4.35729755	2.23500601	-0.90090232
С	-3.86867099	0.29949883	-2.22427189
С	-5.64665516	2.26104504	-1.41044631
С	-5.16138779	0.31687402	-2.72757797
С	-6.05416350	1.30061232	-2.32612830
Η	-4.04665630	2.98254647	-0.18281471
Η	-3.18737969	-0.48202832	-2.53495227
Η	-6.33553122	3.03248618	-1.09099496

Η	-5.47378507	-0.44490079	-3.43023225
Η	-7.06231537	1.31505737	-2.71927793
С	-2.05279358	1.26899786	-0.73284784
0	-1.92230271	1.66466429	0.47882709
С	-1.02574423	0.87575783	-1.55460347
С	0.35105251	0.81402753	-1.07318892
С	1.25418288	1.80257450	-1.06775150
С	1.02338509	3.17503574	-1.50291680
Η	0.09181560	3.55349471	-1.89072956
С	2.18234160	3.82546778	-1.30665092
Η	2.40992107	4.86099680	-1.50367096
С	3.10831849	2.83892649	-0.76403013
Η	4.14061044	3.03142670	-0.50116164
Ν	2.58652101	1.66371147	-0.62009341
С	1.26573247	-2.69213537	-0.63138003
С	0.92907907	-1.60763890	-1.41704448
С	1.48555010	-3.91957687	-1.22283687
С	0.81083981	-1.66381595	-2.78883901
С	1.35995739	-4.01528662	-2.60447511
С	1.03119296	-2.90421198	-3.37475330
Η	1.75182843	-4.78314438	-0.62789553
Η	0.56625135	-0.79584567	-3.38408892
Η	1.52616469	-4.96719944	-3.09047453
Η	0.94785745	-3.00330248	-4.44832166
С	1.34101013	-2.25194127	0.80418737
С	2.75186168	-2.42092452	1.38635117
С	0.30098264	-2.96561919	1.67945067
Η	-0.70927282	-2.79988892	1.30598477
Η	0.50914122	-4.03470184	1.66242534
Η	0.36291375	-2.61573699	2.70900067
Η	3.00423821	-3.48054141	1.38639970
Η	2.78557431	-2.05407880	2.41151496
Η	3.49013019	-1.88385109	0.79129544
С	1.00580835	-0.78701813	0.67950590
Ν	0.78292844	-0.47355571	-0.56057002
С	0.93831511	0.14125822	1.81397773
Η	1.94309645	0.24770153	2.22954342
Η	0.55700916	1.11758650	1.53526806
Η	0.31426981	-0.29466367	2.59463467
Η	-1.21154121	0.56881951	-2.57392669

 $TS_{E'}$ (rotation of C(O)Ph group); E_B2PLYP-D3BJ = -1188.43023993050; E_wB97XD = -1188.974814000; ZPE = 0.427157; Qcorr = 0.452613; Hcorr = 0.453557; Gcorr = 0.371397; ***imaginary frequency*** -96.9836 cm⁻¹;

	magmary nega	eney 70.70	, , ,
С	-3.44267568	1.25358909	-1.27450729
С	-4.35771111	2.22161576	-0.86536093
С	-3.86381926	0.28184914	-2.18066545
С	-5.65201795	2.23246127	-1.36271238
С	-5.16132422	0.28412107	-2.67173460
С	-6.05926492	1.26226784	-2.26814450
Η	-4.04708453	2.97674417	-0.15525264
Η	-3.17841296	-0.49546271	-2.49280223

H-5.47328045-0.48502347-3.36650149H-7.071157031.26488793-2.65181681C-2.043324521.27712577-0.71238347O-1.903984221.684660830.49357826C-1.020560380.88520842-1.54052918C0.360615810.83153276-1.07500983C1.263124621.82023041-1.08700810C1.026048753.20133000-1.48433708H0.082304243.59171477-1.82834200C2.192476373.84605909-1.30806815H2.414939994.88623619-1.48389104C3.134923702.84756929-0.82615813H4.180053193.02363586-0.60637963N2.608980531.67209560-0.68876001H3.653278840.11464943-0.97511010C1.30526189-2.66716257-0.63474919C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94001640.80723991C2.65918558-2.472890411.50043556C0.175
H-7.071157031.26488793-2.65181681C-2.043324521.27712577-0.71238347O-1.903984221.684660830.49357826C-1.020560380.88520842-1.54052918C0.360615810.83153276-1.07500983C1.263124621.82023041-1.08700810C1.026048753.20133000-1.48433708H0.082304243.59171477-1.82834200C2.192476373.84605909-1.30806815H2.414939994.88623619-1.48389104C3.134923702.84756929-0.82615813H4.180053193.02363586-0.60637963N2.608980531.67209560-0.68876001H3.653278840.11464943-0.97511010C1.30526189-2.66716257-0.63474919C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.3494
$\begin{array}{llllllllllllllllllllllllllllllllllll$
H2.414939994.88623619-1.48389104C3.134923702.84756929-0.82615813H4.180053193.02363586-0.60637963N2.608980531.67209560-0.68876001H3.653278840.11464943-0.97511010C1.30526189-2.66716257-0.63474919C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C3.134923702.84756929-0.82615813H4.180053193.02363586-0.60637963N2.608980531.67209560-0.68876001H3.653278840.11464943-0.97511010C1.30526189-2.66716257-0.63474919C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H4.180053193.02363586-0.60637963N2.608980531.67209560-0.68876001H3.653278840.11464943-0.97511010C1.30526189-2.66716257-0.63474919C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
N2.608980531.67209560-0.68876001H3.653278840.11464943-0.97511010C1.30526189-2.66716257-0.63474919C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H3.653278840.11464943-0.97511010C1.30526189-2.66716257-0.63474919C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C1.30526189-2.66716257-0.63474919C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C0.97577171-1.58084593-1.42209550C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C1.57193916-3.88252845-1.23207640C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C0.90409943-1.62305771-2.79728888C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C1.49897634-3.96339705-2.61853180C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C1.17138860-2.85152687-3.38830372H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H1.83637055-4.74734083-0.63823691H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H0.66212472-0.75159456-3.38891429H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H1.70661284-4.90478710-3.10902375H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H1.12926873-2.94015429-4.46512839C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C1.31266113-2.240906160.80723991C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C2.65918558-2.472890411.50043556C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
C0.17566981-2.922980781.59013210H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H-0.79385889-2.719906981.13579204H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H0.34940165-3.998168081.57892303H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H0.16536323-2.581694272.62425675H2.87151267-3.541278911.50380979H2.61820434-2.123825312.53162039
H 2.87151267 -3.54127891 1.50380979 H 2.61820434 -2.12382531 2.53162030
Н 261820434 -212382531 253162030
11 2.01020737 -2.12302331 2.33102037
Н 3.46531511 -1.95566604 0.98187512
C 1.01479555 -0.76868998 0.67809243
N 0.80319697 -0.45325798 -0.56392077
C 0.97286569 0.16704415 1.80726570
H 2.00041519 0.32429184 2.14629226
Н 0.53219698 1.12333010 1.54506607
Н 0.42868963 -0.28505606 2.63571146
O 4.26607647 -0.60002625 -1.23196286
Н 3.72065188 -1.38733411 -1.28354573

 $\label{eq:starsest} \begin{array}{l} \textbf{TS}_{E'F'}; \ E_B2PLYP-D3BJ = -1188.45315393860; \ E_wB97XD = -1188.994409930; \ ZPE = 0.427615; \ Qcorr = 0.452819; \ Hcorr = 0.453763; \ Gcorr = 0.372670; \\ ***imaginary \ frequency *** \ -208.6989 \ cm^{-1}; \end{array}$

			, .,,
С	-3.72847799	0.83178462	-1.76868629
С	-4.95378856	0.50010256	-1.19248630
С	-3.70901521	1.61671488	-2.91994048
С	-6.13667758	0.95744973	-1.74696532

С	-4.89541236	2.05743033	-3.48596554
С	-6.10951814	1.73519837	-2.89736851
Н	-4.97259191	-0.10960597	-0.29932933
Н	-2.77088246	1.86891434	-3.39537964
Н	-7.08153133	0.70716648	-1.28311776
Н	-4.87052876	2.65418462	-4.38795584
Н	-7.03413864	2.08835666	-3.33468808
С	-2.47523541	0.30090785	-1.14402763
0	-2.52684935	-0.74309083	-0.49245505
С	-1.26474611	1.07651952	-1.32822970
С	-0.04285230	0.76531483	-0.84137717
С	1.15623513	1.54304045	-0.91519724
С	1.42556752	2.83506895	-1.37336809
Н	0.73245883	3.49999848	-1.86463823
С	2.75625166	3.08840364	-1.03612946
Η	3.32160817	3.98459238	-1.24245548
С	3.22888703	1.93772216	-0.39018307
Η	4.21842606	1.75009910	0.00111184
Ν	2.27495216	1.00019883	-0.33826355
Η	3.05753442	-0.24582074	-1.77887535
С	1.43774559	-2.42730849	-0.28930313
С	0.50987849	-1.64730332	-0.95723667
С	1.86256887	-3.61692075	-0.84464195
С	-0.01923066	-1.99645405	-2.18141324
С	1.34221789	-3.99727829	-2.07778287
С	0.41665519	-3.19501721	-2.73552025
Η	2.59283027	-4.23361538	-0.33704045
Η	-0.72929382	-1.36648648	-2.69763005
Η	1.66498393	-4.92376825	-2.53311692
Η	0.02852140	-3.50339143	-3.69682495
С	1.82531107	-1.74951710	0.99670515
С	3.33453056	-1.58999489	1.17877942
С	1.23269832	-2.50271076	2.20392537
Η	0.14798688	-2.58078385	2.13122218
Η	1.65356682	-3.50711291	2.22311407
Η	1.49182401	-1.99922356	3.13462032
Η	3.77900839	-2.57546641	1.31705435
Η	3.54879306	-0.99087863	2.06388109
Η	3.78680195	-1.11492918	0.31164585
С	1.11050761	-0.42372852	0.84728952
Ν	0.27015406	-0.46877917	-0.19342695
С	0.91658481	0.50062568	1.98629038
Η	1.86018026	0.66975351	2.49875069
Η	0.48302684	1.44867214	1.68267384
Η	0.23142541	0.01338815	2.68513231
0	3.43978076	-0.71525081	-2.53488766
Η	2.93174249	-1.52763900	-2.59059669
Η	-1.33982340	2.01733482	-1.85258658

F; E_B2PLYP-D3BJ = -1112.05502967320; E_wB97XD = -1112.576645380; ZPE = 0.405781; Qcorr = 0.427560; Hcorr = 0.428505; Gcorr = 0.354775; C -3.28888725 2.60837820 -1.20588009

С	-4.28739733	3.37041726	-0.60301105
С	-3.23230625	2.54198219	-2.59617820
С	-5.20481140	4.06337731	-1.37489210
С	-4.15973232	3.22374625	-3.36906826
С	-5.14397240	3.98924431	-2.76036021
Η	-4.33595433	3.42286426	0.47629404
Η	-2.47423119	1.94068115	-3.08035823
Η	-5.96929548	4.66138036	-0.89668107
Η	-4.11429931	3.15557824	-4.44789134
Η	-5.86407647	4.52593734	-3.36407226
С	-2.32805218	1.84896614	-0.34000803
0	-2.67199420	1.55418512	0.81328606
С	-1.02656108	1.58628112	-0.88048406
С	-0.01935100	0.86473807	-0.29670002
С	1.38651711	1.10408409	-0.52523404
С	2.26596117	1.94231315	-1.17707009
Η	2.01289315	2.73140621	-1.86509414
С	3.55676227	1.55255612	-0.75584406
Η	4.49216834	1.98080415	-1.07716108
С	3.42352426	0.51133204	0.14688301
Η	4.16317032	-0.04825300	0.69387105
Ν	2.10447716	0.24804502	0.25387402
Η	-0.71293805	2.20502717	-1.70962013
С	-0.14964001	-2.45508819	0.80042506
С	-0.92248807	-1.31329610	0.58792405
С	-0.74329606	-3.69640228	0.87160007
С	-2.28725917	-1.40393211	0.38444403
С	-2.12206716	-3.79942729	0.70435505
С	-2.87490922	-2.66573220	0.44660803
Η	-0.14102501	-4.58162435	1.03212708
Η	-2.89284522	-0.53402204	0.20288702
Η	-2.60226320	-4.76716936	0.76015706
Η	-3.94316630	-2.75157221	0.29750602
С	1.32638710	-2.12180616	0.77371106
С	1.84068614	-2.38148118	-0.64890905
С	2.16265316	-2.91820622	1.76634614
Η	1.77182813	-2.85660322	2.78051921
Η	2.17013216	-3.96792531	1.47197312
Η	3.19486124	-2.56535519	1.76643513
Η	1.70565313	-3.43613526	-0.88856307
Η	2.90180122	-2.14403316	-0.72820806
Н	1.29608310	-1.79357714	-1.38905510
С	1.26344709	-0.59207905	1.07670808
N	-0.08421401	-0.17550501	0.59567205
C	1.42877111	-0.23265602	2.54244920
H	2.44302019	-0.45475003	2.87087422
Н	1.23824410	0.83117106	2.67621620
Н	0.72776606	-0.79957006	3.15315624

F'; E_B2PLYP-D3BJ = -1188.48670819090; E_wB97XD = -1189.035185520; ZPE = 0.429964; Qcorr = 0.455357; Hcorr = 0.456301; Gcorr = 0.374470; C -3.77673334 0.86460428 -1.93304872

С	-5.07070535	0.70768236	-1.43992668
С	-3.59058522	1.45537749	-3.18092853
С	-6.15888513	1.14620372	-2.17449684
С	-4.68236284	1.87652785	-3.92466793
С	-5.96634320	1.72881447	-3.42059937
Η	-5.21721108	0.24692796	-0.47227746
Η	-2.59546556	1.56824898	-3.58965560
Н	-7.15883778	1.03255415	-1.77735026
Η	-4.52910906	2.32055567	-4.89920305
Η	-6.81708130	2.06548697	-3.99839416
С	-2.62817414	0.34754553	-1.12263654
0	-2.82155554	-0.58033138	-0.33661360
С	-1.35257780	1.01465979	-1.28650182
С	-0.19069299	0.70453962	-0.66583679
C	0.99328403	1.52134845	-0.64739358
Ċ	1.48089221	2.74430806	-1.05239848
Н	0.97924963	3.45814558	-1.68416776
С	2.76589720	2.85870890	-0.48047307
H	3.45508503	3.67783259	-0.60711410
С	3.00996182	1.71993373	0.26464185
H	3.86334555	1.45106256	0.86171987
Ν	1.94459526	0.89768575	0.11545983
Н	2.52764548	-0.02549070	-2.13066163
С	1.48213434	-2.29755865	-0.28448117
C	0.31521119	-1.65817101	-0.67712599
С	1.88553999	-3.46148896	-0.90856662
С	-0.46032929	-2.15699750	-1.71046834
С	1.11474244	-3.98036298	-1.94346315
С	-0.04385151	-3.32651738	-2.33757791
Η	2.79976509	-3.95476932	-0.60323235
Н	-1.35605030	-1.65850122	-2.04321029
Η	1.42190354	-4.88802436	-2.44527488
Η	-0.63729623	-3.72533783	-3.14969390
С	2.15454922	-1.56334005	0.84790969
С	3.65034161	-1.37087439	0.61282353
С	1.96040610	-2.37251509	2.13778984
Η	0.90705194	-2.55742966	2.34721409
Η	2.45330093	-3.33747023	2.01797499
Η	2.40696672	-1.86845552	2.99471437
Η	4.13766638	-2.34581537	0.60019937
Η	4.09692217	-0.78787034	1.41929750
Η	3.85690588	-0.87872863	-0.33634202
С	1.35099337	-0.21929455	0.87352231
Ν	0.12469744	-0.45916889	0.06189040
С	1.00980646	0.30880537	2.25706099
Н	1.92946672	0.50503136	2.80843745
Η	0.45494447	1.24245637	2.16441270
Η	0.40609351	-0.40133889	2.81480573
0	2.62116965	-0.47560123	-2.97456657
Η	2.24321306	-1.34412535	-2.81407341
Η	-1.33925285	1.92740207	-1.86434903

 TS_{F3a} ; E_B2PLYP-D3BJ = -1112.02765936350; E_wB97XD = -1112.548976560; ZPE = 0.404076; Qcorr = 0.425570; Hcorr = 0.426514; Gcorr = 0.353497; ***imaginary frequency*** -148.9563 cm⁻¹;

C	2 05274002	075554504	1 02207004
C	-3.953/4093	2.75554524	-1.93307894
C	-4.36195025	4.08319458	-1.82411353
C	-4.64963459	1.91312075	-2.79825814
C	-5.42360811	4.56352777	-2.57577764
C	-5.71863289	2.38892270	-3.54332464
С	-6.10671762	3.71722229	-3.43835893
Η	-3.83651245	4.74585375	-1.14918166
Η	-4.36730733	0.87134189	-2.87841744
Η	-5.71919118	5.60103214	-2.48719530
Η	-6.25392489	1.71789752	-4.20268626
Η	-6.93978644	4.08893470	-4.02058401
С	-2.79715943	2.26847521	-1.10041288
0	-2.62846092	2.80316512	0.05160020
С	-1.99275428	1.29111927	-1.62663213
С	-0.89395580	0.75518515	-0.84603464
С	0.45142899	1.19410130	-0.78778971
С	1.31840558	2.18716951	-1.21292097
Н	1.06223408	3.04715013	-1.80849132
С	2.57931506	1.83920847	-0.71013184
Ĥ	3 49962187	2.38049283	-0.85408890
C	2 45659996	0.65144567	0.00851664
н	3 19668802	0.07208146	0.53461021
N	1 17446364	0.27394597	-0.06344082
н	-2 1/957917	0.27524550	-2 60289422
$\hat{\mathbf{C}}$	-1 01012506	-2 59133769	-0.0/303653
C	-1.81080018	-1 / 5927290	-0.04505055
C	1 61027361	3 83776011	0.05632730
C	-1.01027301	-3.63770911	-0.03032739
C	-3.19101903	-1.51009723	-0.20452500
C	-2.994/0102	-3.91903339	-0.18007905
	-5.77270012	-2.//34/10/	-0.28030183
н	-1.00999010	-4./34/8891	0.02102548
H	-3./8503941	-0.60995380	-0.32725196
H	-3.4/241046	-4.89015624	-0.19246985
H	-4.84691864	-2.86056618	-0.3/6449/1
C	0.45398584	-2.21112529	-0.00031545
C	1.01586939	-2.23708133	-1.42599874
C	1.29661010	-3.09644116	0.90478665
Η	0.87242103	-3.18966490	1.90287638
Η	1.36429308	-4.09445836	0.47175152
Η	2.30860337	-2.69816485	0.98866317
Η	0.95010658	-3.25221743	-1.81618128
Η	2.06291611	-1.93312115	-1.43036183
Η	0.45974611	-1.58151634	-2.09751547
С	0.31774168	-0.73805633	0.51156924
Ν	-0.97466705	-0.32773701	-0.08744619
С	0.27932980	-0.59784185	2.02276927
Η	1.26951332	-0.80578636	2.42466696
Η	-0.00413114	0.41950000	2.28699405
Н	-0.43388308	-1.29560022	2.45714318

3a; E_B2PLYP-D3BJ = -1112.06181082590; E_wB97XD = -1112.583696180; ZPE = 0.406190; Qcorr = 0.427942; Hcorr = 0.428886; Gcorr = 0.355463;

υ.	v_{001} , v_{001} –	0.127712, 110011	-0.120000, 0
С	-0.93853432	4.68396285	1.39486245
С	-1.06682674	5.82127450	0.59979039
С	-1.85181343	4.47531380	2.42661877
С	-2.09398401	6.72374576	0.81986432
С	-2.86977817	5.38797093	2.65828354
С	-2.99726644	6.50999313	1.85246151
Н	-0.35874903	5.98947370	-0.20043253
Н	-1.76313987	3.61188947	3.07199764
Н	-2.18985492	7.59563306	0.18630626
Н	-3.56416949	5.22165030	3.47115253
Н	-3.79682350	7.21731970	2.02945704
С	0.20361403	3.74499954	1.12057780
0	1.22856002	4.20308847	0.60080289
Ċ	0.01472483	2.37067811	1.46864852
C	0.91606579	1.35972012	1.27674853
C	2.24592315	1.34334616	0.70243920
C	3.27968979	2.12251798	0.21306297
Н	3.29591989	3,19398398	0.15445069
C	4 29827032	1 23245509	-0 18529859
Н	5 24841629	1 50067166	-0.61738847
C	3 86986282	-0.05787487	0.06860299
Н	4 34881184	-1.00838008	-0.09570976
N	2 63561781	0.03373270	0.59762905
н	-0.93729022	2 09862331	1 89117567
C	-0 50276227	-1 69367725	0.64812057
C	-0.61495860	-0.60710036	1 51178977
C	-1 58705025	-2 51695209	0.43045007
C	-1 78981245	-0.32696345	2 18179115
C	-2 78595597	-2 23860388	1 08341877
C	-2 88310593	-1 15628307	1.00541077
н	-1 51024670	-3 36290987	-0.24070897
н	-1.862/1366	0/18001017	2 88622062
н	-3 6/532706	-2 87581120	0.02284014
н	-3 81562709	-0.95815066	2 45666248
C	0.880/0///1	-1 73225340	0.02706186
C	0.83381502	-0.0036/856	-1.31612041
C	1 /282/081	-3 13638711	-1.310120+1 -0.18270287
с ц	1.42024701	3 73015026	0.72258038
и П	0.84810231	-3.73913020	0.72238038
н	2 46530236	-3.04217277	-0.93499208
и П	0.15038300	1 52206584	1 08086181
п п	1 82280542	-1.52200584	1 77466080
п п	0.46604507	-0.90147308	-1.77400089
C	1 66050072	0.02796933	-1.20903322
C N	0.63673580	-0.89723101	1.10120803
	2 2/161260	-1.72000024	1.00505710
с ц	2.24101009	-1.12770724	2.22002907
и Ц	2 63402420	-2.33441302	3 00157656
п U	2.03403438 1 17755292	-1.0/1373/3	2.0012/020 2.66272016
11	1.4//33320	-2.3/312003	2.002/3710

7. References

1. S. Sajjadifar H. Vahedi, A. Massoudi, O. Louie, New 3*H*-Indole Synthesis by Fischer's Method. Part I. *Molecules*. 2010; **15**, 2491-2498. <u>doi.org/10.3390/molecules15042491</u>

2. O. Ivashenko, J. T. van Herpt, P. Rudolf, B. L. Feringa, W. R. Browne, *Chem. Commun.*, 2013, **49**, 6737-6739.

3. G. Szalóki, L. Sanguinet, Silica-Mediated Synthesis of Indolinooxazolidine-Based Molecular Switches, *J. Org. Chem.*, 2015, **80**, 3949-3956.

4. G. M. Shivashimpi, S. S. Pandey, R. Watanabe, N. Fujikawa, Y. Ogomi, Y. Yamaguchi, S. Hayase, Effect of nature of anchoring groups on photosensitization behavior in unsymmetrical squaraine dyes, *J. Photochem. Photobiol. A*, 2014, **273**, 1-7. Doi.org/10.1016/j.jphotochem.2013.09.004

5. E. Deniz, M. Tomasulo, S. Sortino, F. M. Raymo, Substituent Effects on the Photochromism of Bichromophoric Oxazines. *J. Phys. Chem. C*, 2009, **113**, 8491-8497.

6. B. A. Trofimov, Z. V. Stepanova, L. N. Sobenina, A. I. Mikhaleva, I. A. Ushakov, Ethynylation of Pyrroles with 1-Acyl-2-Bromoacetylenes on Alumina: a Formally "Inverse Sonogashira Coupling", *Tetrahedron Lett.*, 2004, **45**, 6513-6516.

7. M. J. Frisch, W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision C. 01; Gaussian, Inc.: Wallingford, CT, 2009.

8. M. Bursch, J.-M. Mewes, A. Hansen, S. Grimme. Best-Practice DFT Protocols for Basic Molecular Computational Chemistry. Angew. Chem. Int. Ed. 2022, 61, e202205735.

9. J.-D. Chai, M. Head-Gordon. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.

10. S. Grimme, S. Ehrlich, L. Goerigk. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456-1465.

11. A. V. Marenich, C. J. Cramer, D. G. Truhlar. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B, 2009, 113, 6378-6396.

12. H. P. Hratchian and H. B. Schlegel. Accurate reaction paths using a Hessian based predictor-corrector integrator. J. Chem. Phys. 2004, 120, 9918-9924.

13. Chemcraft - Graphical Software for Visualization of Quantum Chemistry Computations. https://www.chemcraftprog.com (accessed: August 16, 2023).

14. A. V. Marenich, S. V. Jerome, C. J. Cramer, D. G. Truhlar. Charge Model 5: An Extension of Hirshfeld Population Analysis for the Accurate Description of Molecular Interactions in Gaseous and Condensed Phases. J. Chem. Theory Comput. 2012, 8, 527-541.

15. T. Lu, F. Chen. A Multifunctional Wavefunction Analyzer. J.Comput. Chem. 2012, 33, 580-592.