Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

## **Supporting Information**

Synthesis of Glycerol Carbonate using Lithium-modified Zeolite Beta: A Kinetic Study

Priyanka Gautam<sup>1</sup>, Sanghamitra Barman<sup>\*,2</sup>, Amjad Ali<sup>1,3</sup>

<sup>1</sup> School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology,

Patiala-147004, India

<sup>2</sup> Department of Chemical Engineering, Thapar Institute of Engineering and Technology,

Patiala-147004, India

<sup>3</sup> TIET-VT Center of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala-147004, India

\*Corresponding E-mail: sbarman@thapar.edu (S. Barman)

https://orcid.org/0000-0002-9189-5035

Table of contents:

Table S1 Comparison with previously reported zeolites.

Fig. S1 Diagrammatic representation of Li-modified zeolite beta.

Fig. S2 <sup>1</sup>H NMR spectrum of the reaction mixture

Fig. S3 <sup>13</sup>C NMR spectrum of the reaction mixture

Fig. S4 FT-IR comparison of the reaction mixture with pure GC and GLY

Fig. S5 HRMS data of the reaction mixture

**Fig. S6** A plot of (a)  $1-X_{GC}$ , (b)  $-\ln(1-X_{GC})$ , and  $1/1-X_{GC}$  versus reaction time for zero, first, and second-order reactions.

| Sr. | Catalyst        | Mole ratio | Tempe  | Detection          | %     | Selectivity | Catalyst    | Reaction              |
|-----|-----------------|------------|--------|--------------------|-------|-------------|-------------|-----------------------|
| No. | / amount        | (GLY:DM    | rature | method of          | Yield | of GC       | reusability | kinetics              |
|     |                 | <b>C</b> ) | (°C)   | product            |       | (%)         |             |                       |
| 1.  | Na-Y/ 10        | 1:3        | 70     | GC                 | 80    | 99          | 5           | -                     |
|     | wt%             |            |        |                    |       |             |             |                       |
| 2.  | К-              | 1:3        | 75     | GC                 | 96    | 100         | 4           | -                     |
|     | Zeolite/        |            |        |                    |       |             |             |                       |
|     | 4wt%            |            |        |                    |       |             |             |                       |
| 3.  | $Li_{20}\beta/$ | 1:5        | 95     | <sup>1</sup> H NMR | 81.48 | 100         | 5           | 2 <sup>nd</sup> order |
|     | 10wt%           |            |        |                    |       |             |             | kinetics              |

 Table S1 Comparison with previously reported zeolites.



Fig. S1 Diagrammatic representation of Li-modified zeolite beta.



Fig. S2 <sup>1</sup>H NMR spectrum of the reaction mixture.



Fig. S3 <sup>13</sup>C NMR spectrum of the reaction mixture.



Fig. S4 FT-IR comparison of the reaction mixture with pure GC and GLY.

## **HRMS** data

In the HRMS spectra of the final product, a signal at m/z 118.0502 corresponds to the mass of glycerol carbonate (118.0498). While the base peak observed at m/z 100.0639 corresponds to the fragment formed after the loss of water molecule from glycerol carbonate. A peak observed at m/z 95.8186 relates to the mass of tri-protonated glycerol (92.0938 +  $3H^+$ ), indicating the presence of glycerol in the reaction mixture. Another peak observed at m/z 75.897 indicates the removal of water molecules from the GLY during the mass analysis.



Fig. S5 HRMS of left-out glycerol and glycerol carbonate.



**Fig. S6** A plot of (a)  $1-X_{GC}$ , (b)  $-\ln(1-X_{GC})$ , and  $1/1-X_{GC}$  versus reaction time for zero, first, and second-order reaction (Reaction conditions: GLY:DMC mole ratio 1:5,  $Li_{20}\beta$  dosage10 wt% w.r.t. GLY, temperature 95 °C, time 5 h)