Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Nanoporous carbonaceous materials with high surface area: synthesis and application in catalysis

Kailai zhang, ^{ab} Qiuliang Wang, ^{ab} Zilong Zhong, ^{ab} Yali Luo^{*ab}, Jie Liu^{*ab}, Yunfei Liu, ^{ab} Yinong Lyu^{ab}

^a College of Materials Science and Engineering, ^b State Key Laboratory of Materials-Orient

Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China

* Corresponding author: Yali Luo , Jie Liu

E-mail address: luoyali@njtech.edu.cn (Y.L. Luo), liujiecailiao@njtech.edu.cn (J. Liu)

Tables and Figures

Table S1 Elemental analysis for the monomers and the corresponding polymers (wt%)

	С	Н	0
BHMB	78.50	6.54	14.96
HCP-BHMB	84.23	4.32	7.91

Table S2 Pore parameters of HCP-BHMB, HCP-BHMB-K-800 and the nanocatalysts.

Samulas	$S_{\rm BET}{}^a$	$V_{\text{Total}}{}^{b}$	$V_{\rm Micro}^{\ c}$	Dominant pore size ^d
Samples	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	(nm)
HCP-BHMB	1249	0.94	0.55	0.62, 2.31
HCP-BHMB-K-800	3142	2.19	1.89	0.58, 2.12
Ag@HCP-BHMB	1109	0.78	0.49	0.53, 2.15
Ag@HCP-BHMB-K-800	2733	1.88	1.59	0.55, 2.30

^{*a*} Surface area was calculated from the nitrogen adsorption branch according to the BET model.

^b The total pore volume was calculated from the single point nitrogen uptake at $P/P_0 = 0.99$.

^c The micropore volume was estimated by the t-plot method.

^{*d*} Pore size derived from N₂ isotherm with the NLDFT approach.

Name of Catalyst	Metal	Time (min)	k (min ⁻¹)	$\frac{\text{TOF}}{(\text{mol } g^{-1} s^{-1})}$	Ref.
Ag@HCP-BHMB-K-800	Ag	2.5	1.26	2.67×10 ⁻⁵	This work
Ag@HCP-BHMB	Ag	10	3.1×10 ⁻¹	6.67×10 ⁻⁶	This work
Ag@NC(1.0 mg)	Ag	14	4.2×10 ⁻³	2.38×10 ⁻⁶	[1]
Ag/C@mSiO ₂ -S	Ag	7	4.5×10 ⁻¹	1.43×10-6	[2]
1.0Ag/p-BNNS-Air	Ag	0.75	9.01	1.33×10-5	[3]
silica-Ag2	Ag	8	5.10×10 ⁻¹	4.17×10 ⁻⁷	[4]
Ag-COP(1:1)	Ag	5	7.32×10 ⁻¹	3.33×10-7	[5]
Ag@CCTPB-K	Ag	3.5	8.7×10 ⁻¹	1.90×10 ⁻⁵	[6]
$Ag@\gamma-Fe_2O_3/t-ZrO_2$	Ag	1.5	2.80	3.33×10-6	[7]
PMPA-1	Ag	6	5.7×10 ⁻¹	5.56×10 ⁻⁷	[8]
Au/TNT	Au	60	6.1×10 ⁻²	3.52×10 ⁻⁶	[9]
Au@NH2-MSNs	Au	8	3.7×10 ⁻¹	1.04×10 ⁻⁵	[10]
Au-Ce-MOF	Au	10	3.24×10 ⁻¹	1.67×10 ⁻⁶	[11]
CG-Ag ₂ O/Au-SiO ₂	Au	7	4.89×10 ⁻¹	1.19×10 ⁻⁵	[12]
PCNFs-Au	Au	0.83	6.27	1.5×10 ⁻⁵	[13]
NH ₂ -MIL-	Au	25	1.31×10 ⁻¹	16×10 ⁻⁵	[14]
88B(Fe)@Au@COFs					
Pd/HKUST-1(Pd-14.4)	Pd	3	9.84×10 ⁻¹	4.17×10 ⁻⁶	[15]
Pd/PC-POP(3.7% Pd)	Pd	5.95	5.64×10 ⁻¹	1.51×10-5	[16]
Co/PCNS	Co	7	3.15×10 ⁻¹	6.85×10 ⁻⁶	[17]
CoPOP-2	Co	15	6.9×10 ⁻²	1.56×10-6	[18]
Co-Fe ₃ O ₄ @C-A	Co	1.3	2.10	3.75×10 ⁻⁵	[19]

Table S3 Comparison of catalytic activity of different catalysts for the reduction of 4-NP. (some

 TOF values are calculated based on the experimental conditions listed in the reference)

Fig. S1 Comparison of the FTIR spectra of BHMB and HCP-BHMB.

Fig. S2 ¹³C CP/MAS NMR spectrum of HCP-BHMB.

Fig. S3 TGA curve of HCP-BHMB at a ramp of 10 °C min⁻¹ in nitrogen atmosphere.

Fig. S4 SEM image of HCP-BHMB.

Fig. S5 SEM image of HCP-BHMB-K-800.

Fig. S6 Powder X-Ray diffraction (PXRD) of HCP-BHMB and HCP-BHMB-K-800.

Fig. S7 XPS analysis of Ag@HCP-BHMB. (a) Survey scan of Ag@HCP-BHMB and (b) high-resolution Ag 3d XP spectra of Ag@HCP-BHMB.

Fig. S8 (a) N_2 adsorption-desorption isotherms and (b) pore size distribution curves of Ag@HCP-BHMB and Ag@HCP-BHMB-K-800.

Fig. S9 Time-dependent UV-Vis absorption spectra for the reduction of 4-nitrophenol reduction with $NaBH_4$ in the presence of HCP-BHMB and HCP-BHMB-K-800.

Fig. S10 Reusability of Ag@HCP-BHMB and Ag@HCP-BHMB-K-800 nanocatalysts for the reduction of 4-NP by NaBH₄.

References

- 1 V. Veeramani, N. Van Chi, Y.-L. Yang, N. T. Hong Huong, T. Van Tran, T. Ahamad, S. M. Alshehri and K. C. W. Wu, *RSC Adv.*, 2021, **11**, 6614-6619.
- 2 S. Liu, Y. Qi, L. Cui, Q. Dai, S. Zeng and C. Bai, *Appl. Surf. Sci.*, 2019, 493, 1013-1020.
- 3 Q. Lu, J. An, Y. Duan, Q. Luo, R. Yin, X. Li, C. Tang and D. Wang, *J. Catal.*, 2021, **395**, 457-466.
- 4 A. Wei, L. Shen, S. Chen, L. Guo and W. Chen, J. Phys. Chem. Solids, 2019, 135, 109106.
- 5 F. Rezaei and M. Dinari, Colloids Surf. A Physicochem. Eng. Asp., 2021, 618, 126441.
- 6 Q. Wang, Y. Liu, Q. Meng, Y. Zhu, J. Xie, Y. Luo and Y. Lyu, *Micropor. Mesopor. Mater.*, 2019, 290, 109672.
- 7 S. Gholizadeh Khasevani, N. Faroughi and M. R. Gholami, *Mater. Res. Bull.*, 2020, **126**, 110838.
- 8 H. Huang, C. Li, Q. Zhang, J. Huang, J. Ji, Y. Liu and L. Li, *Polym. Compos.*, 2023, **44**, 7674-7686.
- 9 K. Shanmugaraj, T. M. Bustamante, C. C. Torres and C. H. Campos, *Catal. Today*, 2022, **388-389**, 383-393.
- 10 D. Ren, J. Xu, N. Chen, Z. Ye, X. Li, Q. Chen and S. Ma, *Colloids Surf. A Physicochem. Eng. Asp.*, 2021, **611**, 125773.
- 11 S. Guo, H. Yuan, W. Luo, X. Liu, X. Zhang, H. Jiang, F. Liu and G. J. Cheng, *Nano Res.*, 2021, 14, 1287-1293.
- 12 N. K. R. Bogireddy, A. G. El Hachimi, Y. R. Mejia, M. K. Kesarla, R. S. Varma, R. H. Becerra and V. Agarwal, npj Clean Water, 2022, **5**, 40.
- 13 J. Wang, C. Cai, Z. Zhang, C. Li and R. Liu, Chemosphere, 2020, 239, 124833.
- 14 S. Liu, C. Mao, C. Yang, P. Hong, M. Zhu, Y. Zhou and Y. Zhang, *New J. Chem.*, 2023, **47**, 8161-8169.
- 15 M. Kubo, T. Matsumoto and M. Shimada, *Adv. Powder Technol.*, 2022, **33**, 103701.
- 16 M. Yuan, R. Yang, S. Wei, X. Hu, D. Xu, J. Yang and Z. Dong, J. Colloid Interface Sci., 2019, 538, 720-730.
- 17 L. Hu, X. Liu, A. Guo, J. Wu, Y. Wang, Y. Long and G. Fan, *Sep. Purif. Technol.*, 2022, **288**, 120595.
- 18 S. Gopi, A. G. Ramu, S. Sakthivel, G. Maia, C.-H. Jang, D. Choi and K. Yun, *Chemosphere*, 2021, **265**, 129052.
- 19 A. F. Baye, R. Appiah-Ntiamoah and H. Kim, *Sci. Total Environ.*, 2020, **712**,135492.