SUPPORTING INFORMATION - Part A

Synthesis, Conformational Analysis and GalNAc-Lectin Interactions of constrained C-glycoside analogue of T_{N} antigen

Juliette Dourdan, Florian Rouzier, Thanh Thao Huynh, Sullivan Bricaud, Arnaud Nourry,* Stéphane Guillarme*
Institut des Molécules et des Matériaux du Mans, UMR 6283 CNRS and Le Mans Université, Avenue O. Messiaen, 72085 Le Mans, France.

Table of Contents

General Information 2
Synthesis of T_{N} antigen derivative 1 2
Experimental data on T_{N} antigen derivative 1 3
Experimental data on constrained C-glycoside 2 5
${ }^{1} \mathrm{H}$ NMR spectra of analogue 2 at different temperatures 6
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compounds 1 and 2 7
Experimental part on STD experiments 21

1- General Information

All experiments were carried out under argon with anhydrous solvents in dried glassware. THF was dried over activated alumina on a dry station purchased from Innovative Technologies. Commercially available materials were used without further purification. Flash chromatographies were performed on silica gel (40-63 $\mu \mathrm{m}$ from Macherey-Nagel) using Reveleris X^{2} Grace apparatus. Analytical TLCs were carried out on pre-coated silica gel 60 F254 from Macherey-Nagel. Optical rotations were measured using a Jasco P2000 at the sodium D line ($\Lambda=589 \mathrm{~nm}$) with a 1-dm path length cell at $25^{\circ} \mathrm{C}$. Melting points were measured using Buchi B-545 apparatus. NMR spectra were recorded with a Bruker Avance 400 or a Bruker Avance Neo 500 spectrometer. Chemical shifts are reported in ppm from TMS as the internal standard for the ${ }^{1} \mathrm{H}$ NMR spectrum and from the residual peaks of the solvent $\left(\mathrm{CDCl}_{3}\right)$ for ${ }^{13} \mathrm{C}$ NMR spectrum. Structural assignments of the isolated compounds were based on ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, COSY and HSQC NMR experiments. High resolution mass spectroscopy was performed with a Bruker microTOF QIII mass spectrometer using ESI techniques.

For NMR assignment, following numbering was chosen:

2- Synthesis of T_{N} antigen derivative 1

Tn antigen derivative 1 was isolated from 3,4,6-tri-O-Benzyl-2-nitro-galactal following methodology developed by Schmidt et al. ${ }^{1}$ As first attempt, Michael addition of the N -Ac serine derivative 8 a led to an inseparable mixture of the two anomers of desired compounds in 74% yield. Reduction of nitro group and acylation of this mixture did not allow the separation of both anomers. Then, the addition of the N-Boc serine derivative $\mathbf{8 b}$ onto 2-nitrogalactal led to a separable mixture of the two anomers (Scheme 1).

Scheme 1
Nitro group of α-anomer $9 b$ was reduced and the amine was treated with acetic anhydride leading to 10 in 68% yield. Boc deprotection, acylation and hydrogenolysis of benzyl groups afforded 1 (Scheme 2).

[^0]
87\%

1) $\mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
r. t., 20 mins
2) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine,
r. t., 2 h

Scheme 2

3- Experimental data on T_{N} antigen derivative 1

a) Compound 9b

Under argon, to a solution of 3,4,6-tri-O-benzyl-2-nitro-D-galactal ($5 \mathrm{~g}, 10.8 \mathrm{mmol}$) in dry THF (25 mL) was added a solution of ($\mathrm{N}-\mathrm{Boc}, \mathrm{NHMe}$)-serine 7 (2.1 g 9.8 mmol) in dry THF (60 mL). The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and a solution of potassium tert-butylate in dry THF ($0,188 \mathrm{M}, 13 \mathrm{~mL}$, 2.45 mmol) was added dropwise. The solution was stirred at room temperature for 23 h , and after concentration, the crude product was purified by column chromatography (Cyclohexane/EtOAc, 1:0 to $8: 2$) to afford α-anomer 9 b ($2.71 \mathrm{~g}, 4,69 \mathrm{mmol}, 43 \%$), β-anomer 9 b ($0.4 \mathrm{~g}, 0.69 \mathrm{mmol}, 6 \%$) and a mixture of the two anomers ($1.85 \mathrm{~g}, 3.2 \mathrm{mmol}, 30 \%$).
α-anomer 9b. White solid. $R_{f}=0.47$ (cyclohexane/EtOAc, 5:5). $[\alpha]_{D}^{20}=+91.4$ (c 1.04, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). HRMS (ESI) Calculated for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{NaO}_{10}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), \mathrm{m} / \mathrm{z}=702.2997$; found: 702.2985. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.38-7.20\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 6.12-6.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NHCH}_{3}\right), 5.40-5.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NHBoc}, \mathrm{H}-1), 5.00$ (dd, $J=10.7$; $4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2$), 4.83 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right.$), 4.52 (d, J= 11.6 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.47\left(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.42-4.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}, \mathrm{H}-3\right), 4.18\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right)$, 4.02 - 3.95 (m, 3H, H-1', H-4, H-5), 3.70-3.66 (m, 1H, H-1'), $3.59-3.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6), 2.75$ (d, J = $\left.4.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NHCH}_{3}\right), 1.46(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 170.0$ (C3'), 155.4 ($\mathrm{C}=\mathrm{O}$ (Boc$)$), $137.9\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 137.6\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 137.2\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.1$ $\left(\mathrm{CH}_{\text {Ar }}\right), 97.2(\mathrm{C} 1), 84.5(\mathrm{C} 2), 80.6(\mathrm{Cq}(\mathrm{Boc})), 75.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 75.1(\mathrm{C} 3), 73.9\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 73.1\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 73.0$ (C4), 70.4 (C5), 69.2 (C1'), 68.8 (C6), 54.2 (C2'), $28.5\left(\mathrm{CH}_{3}(\mathrm{Boc})\right), 26.4\left(\mathrm{NH}^{2} \mathrm{CH}_{3}\right)$.

b) Compound 10

α-anomer 9b (1.5 g, $2.22 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in a 2:1 THF/Water mixture (225 mL) and cooled down between $0{ }^{\circ} \mathrm{C}$ and $-5^{\circ} \mathrm{C}$. Concentrated hydrochloric acid ($6.8 \mathrm{~mL}, 100 \mathrm{eq}$), acetic acid (40 mL , 320 eq) and freshly activated zinc ($3.5 \mathrm{~g}, 53.3 \mathrm{mmol}, 24 \mathrm{eq}$) were added and the solution was stirred, at $0{ }^{\circ} \mathrm{C}$, until the TLC showed complete reaction. The mixture was filtered on Celite ${ }^{\circledR}$ and the filtrate was diluted in DCM. After separation of the two layers, the organic layer was washed with water, a saturated aqueous NaHCO_{3} solution and then, water. The organic layer was then dried over MgSO_{4},
concentrated under reduced pressure and then co-evaporated with toluene. The crude product was dissolved in dry DCM (70 mL) and DMAP ($13.5 \mathrm{mg}, 0.111 \mathrm{mmol}, 0.05 \mathrm{eq}$), anhydride acetic (1.68 mL , $17.8 \mathrm{mmol}, 8 \mathrm{eq})$ and $\mathrm{Et}_{3} \mathrm{~N}(2.09 \mathrm{~mL}, 15.54 \mathrm{mmol}, 7 \mathrm{eq})$ were added. The solution was stirred at room temperature during 4 h and the reaction was diluted with water. The aqueous phase was extracted with DCM , then the organic phase was dried over MgSO_{4}, concentrated under reduced pressure and co-evaporation with toluene. Purification by column chromatography on silica gel (EtOAc/MeOH, 100:0 to 90:10) gave compound 10 ($1.34 \mathrm{~g}, 1.94 \mathrm{mmol}, 87 \%$).

White powder. $R_{f}=0.31\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 95: 5\right) \cdot[\alpha]_{D}^{20}=+71.3\left(c 1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) Calculated for $\mathrm{C}_{38} \mathrm{H}_{49} \mathrm{~N}_{3} \mathrm{NaO}_{9}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), \mathrm{m} / \mathrm{z}=714.3361$; found: 714.3352. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.27$ ($\mathrm{m}, 15 \mathrm{H}, \mathrm{ArH}$) , 6.42 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{3}$), $6.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{Boc}), 5.50(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}-\mathrm{Ac})$, 4.94 and 4.55 (AB syst., $\left.J=11.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.90(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.71$ and 4.47 (AB syst., $\left.J=12.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.68-4.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.59$ and $4.36\left(\mathrm{AB}\right.$ syst., $\left.J=11.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right)$, $4.32-4.26\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 4.23\left(\mathrm{~d}, \mathrm{~J}=11.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{i}^{\prime}\right), 3.93-3.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$ and $\mathrm{H}-5), 3.70-3.61$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}$ and $\mathrm{H}-6$), 3.57 ($\mathrm{dd}, \mathrm{J}=11.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3$), 3.45 (dd, $J=9.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 2.59 (d, $\left.J=4.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{3}\right), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Boc})\right) .{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.6(\mathrm{C}=\mathrm{O}(\mathrm{Ac})), 170.2\left(\mathrm{C}^{\prime}\right), 155.7(\mathrm{C}=\mathrm{O}(\mathrm{Boc})), 138.3\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 138.1\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 137.5\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 100.6(\mathrm{C} 1), 80.4(\mathrm{Cq}$ (Boc)), $77.4(\mathrm{C3}), 74.5\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 74,1\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 72.8(\mathrm{C} 4), 72.4\left(\mathrm{Cl}^{\prime}\right), 71.9\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 70.9(\mathrm{C5}), 70.5(\mathrm{C} 6)$, $55.1\left(\mathrm{C}^{\prime}\right), 49.1(\mathrm{C} 2), 28.5\left(\mathrm{CH}_{3}(\mathrm{Boc})\right), 26.2\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{3}-\mathrm{N}\right)\right), 23.5\left(\mathrm{CH}_{3}(\mathrm{Ac})\right)$.

c) Compound 11

To a solution of compound $\mathbf{1 0}(236 \mathrm{mg}, 0.341 \mathrm{mmol}, 1 \mathrm{eq})$ in dry DCM $(23 \mathrm{~mL})$ was added TFA (7.6 mL). The solution was stirred at room temperature during 20 min and then concentrated under reduced pressure and co-evaporated with toluene. The crude amine was dissolved in pyridine (0.791 $\mathrm{mL}, 30 \mathrm{eq}$) and anhydrid acetic ($1.85 \mathrm{ml}, 60 \mathrm{eq}$) was added. After stirring during 2 h , the solution was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (DCM/MeOH, 100:0 to 90:10) to afford compound 11 ($170 \mathrm{mg}, 0.265 \mathrm{mmol}, 78 \%$).

White powder. $R_{f}=0.66\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 9: 1\right) .[\alpha]_{D}^{20}=+86.1(c 0.4, \mathrm{MeOH})$. HRMS (ESI) Calculated for $\mathrm{C}_{35} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{NaO}_{8}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), \mathrm{m} / \mathrm{z}=656.2942$; found: 656.2948. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.27$ ($\mathrm{m}, 15 \mathrm{H}, \mathrm{HAr}$), 7.02 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{AcNH}^{\prime} \mathrm{C}^{2}$), 6.34 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHMe}$), 5.51 (d, J = 8.7 Hz , $1 \mathrm{H}, \mathrm{AcNH}-\mathrm{C} 2)$, $4.95\left(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.90(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.72(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 4.68-4.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.58-4.53\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-2^{\prime}\right.$ and $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 4.50\left(\mathrm{~d}, \mathrm{~J}=10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\right.$ Ph), $4.40\left(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.18(\mathrm{dd}, J=11.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.96-3.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-4), 3.69\left(\mathrm{dd}, \mathrm{J}=9.7,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 3.62$ (ddd, $J=11.3,8.2,3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-3$ and $\left.\mathrm{H}-6\right), 3.42$ (dd, $\mathrm{J}=$ 9.7, 4.4 Hz, 1H, H-1'), $2.66\left(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right) .{ }^{13} \mathrm{C}$ NMR ($100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3$ (2 * C=O (Ac)), 170.1 (C3'), 138.3 ($\left.\mathrm{Cq}_{\mathrm{Ar}}\right), 138.0\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 137.3$ ($\left.\mathrm{Cq}_{\mathrm{Ar}}\right)$, $128.8\left(\mathrm{CH}_{\text {Ar }}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\text {Ar }}\right), 128.1(\mathrm{CHAr}), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(\mathrm{CH}_{\text {Ar }}\right), 100.8$ (C1), $77.4(\mathrm{C3}), 74.5\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 74.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 72.7(\mathrm{C4}), 72.3\left(\mathrm{Cl}^{\prime}\right), 72.0\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 71.0(\mathrm{C} 5), 70.7(\mathrm{C} 6)$, 53.6 (C2'), $49.5(\mathrm{C} 2), 26.3\left(\mathrm{CH}_{3}-\mathrm{N}\right), 23.6\left(\mathrm{CH}_{3}(\mathrm{Ac})\right)$, $23.4\left(\mathrm{CH}_{3}(\mathrm{Ac})\right)$.

d) T_{N} antigen derivative 1

Compound $\mathbf{1 1}$ ($325 \mathrm{mg}, 0.53 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\mathrm{EtOH}(4.2 \mathrm{~mL})$. Cyclohexene ($2.1 \mathrm{~mL}, 4 \mathrm{eq}$) and $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \% \mathrm{w} / \mathrm{w})$ were then added. The solution was stirred at reflux during 6 h , then filtered on Silice/Celite ${ }^{\circledR}$ and the filtrate was concentrated under reduced pressure. Purification by column chromatography on silica gel (DCM/MeOH, 100:0 to 70:30) gave compound 1 ($138 \mathrm{mg}, 0.38 \mathrm{mmol}$, 71\%).

White powder. M.p. $260-261^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.11$ ($\mathrm{DCM} / \mathrm{MeOH}, 8: 2$). $[\alpha]_{D}^{20}=+146$ (c 0.49, $\mathrm{H}_{2} \mathrm{O}$). HRMS (ESI) Calculated for $\mathrm{C}_{14} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{NaO}_{8}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), \mathrm{m} / \mathrm{z}=386.1534$, found: $386.1532 .{ }^{1} \mathrm{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 4.92(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.57(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5), 4.18(\mathrm{dd}, J=11.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.01(\mathrm{~d}$, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4), 3.97-3.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-6, \mathrm{H}-3\right.$ and $\left.\mathrm{H}-2^{\prime}\right), 3.85(\mathrm{dd}, J=10.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 3.81-$ $3.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 2.78\left(\mathrm{~s}, \mathrm{~J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NH}-\mathrm{CH}_{3}\right), 2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right) .{ }^{13} \mathrm{C}$
 (C4), 67.6 (C3), $67.1(\mathrm{C} 6), 61.2\left(\mathrm{C}^{\prime}\right), 53.9(\mathrm{C} 5), 49.8(\mathrm{C} 2), 26.0\left(\mathrm{CH}_{3}-\mathrm{N}\right), 22.0\left(\mathrm{CH}_{3}(\mathrm{Ac})\right), 21.8\left(\mathrm{CH}_{3}(\mathrm{Ac})\right)$.

4- Experimental data on constrained C -glycoside 2

a) Compound 6

A solution of deprotected isoxazolidine ${ }^{2}$ ($175 \mathrm{mg}, 0.29 \mathrm{mmol}$) in pyridine (3.5 mL) and acetic anhydride ($0.35 \mathrm{~mL}, 3.7 \mathrm{mmol}$) was stirred overnight. The reaction was diluted with EtOAc (15 mL) and water (20 mL). After separation of layers, the aqueous one was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). Organic phase was then washed with water ($2 \times 15 \mathrm{~mL}$), dried over MgSO_{4} and concentrated under reduced pressure. Crude product was purified by column chromatography on silica gel (DCM/MeOH, 98:2 to 96:4) to afford compound 6 ($134 \mathrm{mg}, 0.208 \mathrm{mmol}, 72 \%$).

Colorless oil. $\mathrm{R}_{f}=0.44$ ($\mathrm{DCM} / \mathrm{MeOH}, 95: 5$). $[\alpha]_{D}^{20}=+3.6$ (c 1.0, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). HRMS (ESI) Calculated for $\mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{NaO}_{8}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), \mathrm{m} / \mathrm{z}=668.2942$, found: 668.2948. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 323 \mathrm{~K}\right) \delta 7.36-$ 7.20 ($\mathrm{m}, 15 \mathrm{H}, \mathrm{ArH}$), 6.50 (br s, 1H, NH), 4.72 (d, J = $11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.70-4.64 (m, 1H, H-3'), 4.63 (d, J = $11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), $4.53\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.53-4.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.43(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}$), 4.28 (ddd, $\left.J=7.3,5.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.25-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.18-4.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 2), 4.09 (dd, J = 11.6, $9.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6), 4.02-3.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-3), 3.77$ (dd, J = 6.1, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$), 3.67 (br d, J = $11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $3.00-2.60\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.80\left(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 2.02(\mathrm{br} \mathrm{s}, 6 \mathrm{H}$, $\left.2{ }^{*} \mathrm{CH}_{3}-\mathrm{CO}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.100.6 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8(\mathrm{C}=\mathrm{O}), 170.3(\mathrm{C}=\mathrm{O}), 138.2\left(\mathrm{Cq}_{\mathrm{Ar}}\right), 137.8\left(2 \mathrm{Cq}_{\mathrm{Ar}}\right), 128.5$ (2 CHAr), 128.4 (CHAr), 127.9 (CHAr), 127.7 (CHAr), 127.4 (CHAr), 80.8 (C1'), 75.3 (C5), 74.2 (C3), 73.3 $\left(2 \mathrm{CH}_{2}\right), 73.2(\mathrm{C} 4), 71.4(\mathrm{CH} 2), 68.3(\mathrm{C} 1), 65.0(\mathrm{C} 6), 61.4\left(\mathrm{C}^{\prime}\right), 53.4(\mathrm{C} 2), 38.1\left(\mathrm{C}^{\prime}\right), 26.3\left(\mathrm{CH}_{3}-\mathrm{N}\right), 23.1$ $\left(\mathrm{CH}_{3}-\mathrm{CO}\right), 21.2\left(\mathrm{CH}_{3}-\mathrm{CO}\right)$.
b) Constrained C-glycoside 2

Under argon, to a solution compound $6(175 \mathrm{mg}, 0.271 \mathrm{mmol})$ in ethanol (2.5 mL) were added cyclohexene (1.2 mL) and Pearlman's catalyst (35 mg). The solution was heated under reflux for 6.5 h. After filtration onto Celite ${ }^{\circledR}$, volatiles were removed under reduced pressure and crude product was purified by column chromatography on silica gel ($\mathrm{DCM} / \mathrm{MeOH}, 90: 10$ to $80: 20$) to give C glycoside analogue 2 ($64.5 \mathrm{mg}, 0.172 \mathrm{mmol}, 64 \%$).

White solid. M.p.: $153.5-154^{\circ} \mathrm{C} . \mathrm{R}_{f}=0.25$ (DCM/MeOH, 80:20). $[\alpha]_{D}^{20}=+88.3\left(c 0.5, \mathrm{H}_{2} \mathrm{O}\right)$. HRMS (ESI) Calculated for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right), \mathrm{m} / \mathrm{z}=398.1534$; found: 398.1534 . ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, $383 \mathrm{~K}) \delta 4.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3^{\prime}\right), 4.62-4.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 4.25(\mathrm{dd}, \mathrm{J}=9.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.12(\mathrm{dd}, J=5.7$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.97(\mathrm{dd}, J=9.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3), 3.96-3.92(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.79$ (dd, J = 12.0, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), 3.69 (dd, J = 12.0, $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$), $2.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 2.73-2.62(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 2.47 (ddd, J = 13.0, 6.0, $2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}$), $2.11\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac})\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}(\mathrm{Ac}) .{ }^{13} \mathrm{C}\right.$ NMR ($\left.125.7 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 383 \mathrm{~K}\right) \delta 175.1$ ($\mathrm{C}=\mathrm{O}$), 171.8 ($\mathrm{C}=\mathrm{O}$), 79.4, ($\mathrm{C1}^{\prime}$), 76.2 (C5), 70.7 (C1), 68.7 (C3), 68.0 (C4), 61.1 (C6), 59.1 ($\left.\mathrm{C}^{\prime}\right)$, $49.9(\mathrm{C} 2), 34.9\left(\mathrm{C}^{\prime}\right), 26.4\left(\mathrm{CH}_{3}-\mathrm{N}\right), 22.3\left(\mathrm{CH}_{3}-\mathrm{CO}\right), 20.3\left(\mathrm{CH}_{3}-\mathrm{CO}\right)$.

[^1]
5- ${ }^{1} \mathrm{H}$ NMR spectra of analogue 2 at different temperatures.

6- ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra

6.1- Compound 9ba.

6.1.a- ${ }^{1} \mathrm{H}$ NMR spectrum of compound $9 \mathrm{~b} \alpha\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

6.1.b- ${ }^{13} \mathrm{C}$ NMR spectrum of compound $9 \mathrm{~b} \alpha\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

6.2-Compound 10.

6.2.a- ${ }^{1} \mathrm{H}$ NMR spectrum of compound $10\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

6.2.b- ${ }^{13} \mathrm{C}$ NMR spectrum of compound $10\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

6.3-Compound 11

6.3.a- ${ }^{1} \mathrm{H}$ NMR spectrum of compound $11\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

6.3.b- ${ }^{13} \mathrm{C}$ NMR spectrum of compound 11 ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$

6.4-Compound 1

6.4.a- ${ }^{1} \mathrm{H}$ NMR spectrum of compound $1\left(\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$

6.4.c- ${ }^{13} \mathrm{C}$ NMR spectrum of compound $1\left(\mathrm{D}_{2} \mathrm{O}, 298 \mathrm{~K}\right)$

6.5-Compound 6

6.5.a- ${ }^{1} \mathrm{H}$ NMR spectra of compound $6\left(\mathrm{CDCl}_{3}, 323 \mathrm{~K}\right)$

6.5.b- ${ }^{13} \mathrm{C}$ NMR spectrum of compound $6\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$
(

6.6-Compound 2

6.6.a- ${ }^{1} \mathrm{H}$ NMR spectra of compound $2\left(\mathrm{D}_{2} \mathrm{O}, 353 \mathrm{~K}\right)$

					(1)
8	風		砣		${ }_{\text {[ppm] }}$

6.6.b- COSY spectra of compound $2\left(\mathrm{D}_{2} \mathrm{O}, 353 \mathrm{~K}\right)$

6.6.c- ${ }^{13} \mathrm{C}$ NMR spectra of compound $2\left(\mathrm{D}_{2} \mathrm{O}, 353 \mathrm{~K}\right)$

7- Experimental part on STD experiments

At 298 K , unless otherwise stated, STD spectra were acquired with 1024 scans, using a 50 ms Gaussian-shaped pulse for the selective saturation of the protein protons in the aliphatic region ($\delta=$ $1 \mathrm{ppm})$. The off-resonance frequency was set at $\delta=40 \mathrm{ppm}$, the relaxation time $\mathrm{D} 1=2 \mathrm{~s}$ and $\mathrm{DS}=4$.

Glycine max lectin (SBA) and dolichos biflorus lectin (DBA) were purchased at Glycodiag.
For SBA and DBA samples, a PBS (phosphate-buffered saline) solution $[\mathrm{NaCl}(137 \mathrm{mM}), \mathrm{KCl}(2.7 \mathrm{mM})$, $\mathrm{Na}_{2} \mathrm{HPO}_{4}(10 \mathrm{mM}), \mathrm{KH}_{2} \mathrm{PO}_{4}(1.7 \mathrm{mM}), \mathrm{pH} 7.3$] in $\mathrm{D}_{2} \mathrm{O}$ was used. A T 1 rho spin-lock filter was used to suppress the protein signals.

- Glycine max lectin (SBA) :

STD spectra for the systems SBA/natural derivative and SBA/C-glycoside were acquired using samples of SBA $(40 \mu \mathrm{M})$ and the corresponding ligand (4 mM). Competition STD experiments between natural derivative and C-glycoside for SBA were ran by stepwise 4 addition of C-glycoside to a solution of SBA $(40 \mu \mathrm{M})$ and natural derivative (4 mM) until a final concentration of 12 mM of the C-glycosides. Five ratio T_{N} antigen derivative $1 / C$-glycoside analogue 2 were acquired: 1:0, 1:0.5, 1:1,1:1.5 and 1:2.

- Dolichos biflorus lectin (DBA) :

STD spectra for the system DBA/natural derivative and DBA/C-glycoside were acquired using samples of DBA ($40 \mu \mathrm{M}$) and the corresponding ligand (4 mM). DBA samples contained 40% of non deuterated water, therefore water-suppression filter was applied using excitation sculpting (stddiffgpes.3). ${ }^{3}$ Competition STD experiments between natural derivative and C-glycoside for SBA were ran by stepwise four additions of C-glycoside to a solution of SBA ($40 \mu \mathrm{M}$) and natural derivative (4 mM) until a final concentration of 12 mM of the C-glycosides. Five ratio T_{N} antigen derivative 1/C-glycoside analogue 2 were acquired: 1:0, 1:0.5, 1:1 , 1:1.5 and 1:2.

Spectra were analysed using the STD value $A\left(A=I_{\text {STD }} / I_{\text {off }}\right)$.

[^2]
[^0]: ${ }^{1}$ G. A. Winterfeld , Y. Ito , T. Ogawa , R. R. Schmidt , Eur. J. Org. Chem. 1999, 1167-1171

[^1]: ${ }^{2}$ F. Rouzier, R. Sillé, O. Montiège, A. Tessier, M. Pipelier, G. Dujardin, A. Martel, A. Nourry, S. Guillarme, Eur. J. Org. Chem. 2020, 43, 6749-6757

[^2]: ${ }^{3}$ T. L. Hwang, A. J. Shaka, J. Magn. Reson. A, 1995, 112, 275-279

