Shaddock peel-loaded CeO₂ composites with peroxidase-like activity for dye degradation and trace detection of ascorbic acid

Wendi Lv ^{a†}, Ziyuan Gao ^{a†}, Huijuan Wu ^a, Lizhi Liu ^a, Huiyong Wang ^c, Baozhan Zheng ^{a,b*}, Juan Du ^{a,b*}, Yong Guo^a

^a College of Chemistry, Sichuan University, Chengdu 610064, China

^b Key Laboratory of Green Chemistry and Technology, Ministry of Education, Sichuan

University, Chengdu 610064, China

^c School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang

453000, China

**Corresponding authors: dujuanchem@scu.edu.cn (J.D.); zhengbaozhan@scu.edu.cn (B.Z.)*

†These authors contributed equally to this work and should be regarded as co-first authors

Figure S1 Elemental map distributions of C, Ce, O and N in Ce@CSP.

Figure S2 Raman spectra of CSP obtained by annealing at 900°C.

Figure S3 (A) N₂ adsorption–desorption isotherm of CSP and Ce@CSP.(B) Pore size distribution of CSP and Ce@CSP.

Figure S4 TGA curve of CeO_2 under O_2 condition.

Figure S5 Effect of (A) concentration of $Ce(NH_4)_2(NO_3)_6$ soaked on the catalytic activity of Ce@CSP, (B) time of annealing on the catalytic activity of Ce@CSP, (C) reaction time on the catalytic activity of Ce@CSP, (D) temperature and pH on the catalytic activity of Ce@CSP, (E) illumination on the catalytic activity of Ce@CSP, (F) storage time on the catalytic activity of Ce@CSP.

Figure S6 Kinetic analysis of prepared CSP nanocomposites by Michaelis-Menten model (A and B) and double reciprocal plots (C and D).

Figure S7 Kinetic analysis of prepared CeO₂ nanocomposites by Michaelis–Menten model (A and B) and double reciprocal plots (C and D).

Figure S8 ESR spectra of DMPO/H₂O₂/Ce@CSP.

Figure S9 Decolorization of MV in real water samples. From left to right: (a)MV + H₂O; (b) MV + H₂O₂; (c) MV + H₂O + Ce@CSP and (d) MV + H₂O₂ +Ce@CSP. The reaction time was 0 min ,5 min,12 min ,15 min and 20 min at room temperature.

Figure S10 UV-Vis absorption spectra of degrading MV in the real water sample.

Figure S11 Influence by various interference (K⁺, Ca²⁺, Na⁺, NH₄⁺, NO₃⁻, SO₄²⁻, CO₃²⁻, Glu, GSH, Thr, P₂O₇⁴⁻, C₆H₅O₇³⁻).

Figure S12 TAC of three commercial beverages (marked as 1-3) each error bar shows the standard deviation of three independent measurements.

Table S1 Surface area and pore volume of CSP and Ce@CSP.

Samples	Surface area (m^2/g)	Total pore volume (cm ³ /g)
CSP	259.146	0.1305
Ce@CSP	272.9986	0.146

Catalyst	K _m (mM)		V _m (10 ⁻⁸ M·s ⁻¹)		Def
Catalyst	TMB	H_2O_2	TMB	H_2O_2	Kel.
CeO ₂ /C nanowire	0.12	2.61	2.08	3.31	[1]
Fe/CeO ₂ nanorods	0.176	47.6	8.6	16.6	[2]
Mo/CeO ₂ NPs	0.001	8.85	9.64	8.01	[3]
Co ₃ O ₄ -CeO ₂	0.36	132.21	16.66	4.34	[4]
HRP	0.434	3.7	10	8.71	[5]
CSP	0.183	23.38	23.50	25.36	This work
CeO ₂	8.63	163.67	4.33	1.28	This work
Ce@CSP	0.059	8.32	19.69	17.89	This work

Table S2 Comparison of kinetic parameters of different CeO₂based catalysts as peroxidase mimic.

Table S3 Comparison of different systems of detecting AA using colorimetric method.

Materiral	Method	LOD(µM)	Linear range(µM)	Ref
Cu-Ag/rGO	Colorimetric	3.6	5-30	[6]
Cu NPs@C	Colorimetric	1.4	10-1000	[7]
SA-AuNPs	Colorimetric	11.2	12.5-150.0	[8]
AuNPs	Colorimetric	2.44	5-60	[9]
Ce@CSP	Colorimetric	1.07	1.6-17.3	this work

Reference

 Wenfei Dong, Yuming Huang, CeO₂/C nanowire derived from a cerium(III) based organic framework as a peroxidase mimic for colorimetric sensing of hydrogen peroxide and for enzymatic sensing of glucose, Microchimica Acta (2020) 187: 11.
Deshetti Jampaiah, T. Srinivasa Reddy, Ahmad Esmaielzadeh Kandjani, P. R. Selvakannan, Ylias M. Sabri, Victoria E. Coyle, Ravi Shuklab and Suresh K. Bhargava, Fe-doped CeO₂ nanorods for enhanced peroxidase-like activity and their application towards glucose detection, J. Mater. Chem. B, 2016, 4,3874.

[3] Xue Jiao, Wanyi Liu, Di Wu, Wenhao Liu and Hongjie Song, Enhanced peroxidase-like activity of Mo-doped ceria nanoparticles for sensitive colorimetric detection of glucose, Anal. Methods, 2018, 10, 76.

[4] Negar Alizadeha, Abdollah Salimia, Rahman Hallaj, Mimicking peroxidase-like activity of Co₃O₄-CeO₂ nanosheets integrated paper-based analytical devices for detection of glucose with smartphone, Sensors and Actuators: B. Chemical 288 (2019) 44-52.

[5] L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, X. Yan, Nat. Nanotechnol. 2007, 2, 577.

[6] Gitashree Darabdhara, Bhagyasmeeta Sharma, Manash R. Das, Rabah Boukherroub, Sabine Szunerits, Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection, Sensors and Actuators B, 2017, 238, 842-851.

[7] Hongliang Tan, Chanjiao Ma, Li Gao, Qian Li, Yonghai Song, Fugang Xu, Tao Wang, Li Wang, Metal–Organic Framework-Derived Copper Nanoparticle@Carbon Nanocomposites as Peroxidase Mimics for Colorimetric Sensing of Ascorbic Acid, Chem. Eur. J. 2014, 20, 1-8.

[8] Titilope John Jayeoye, Uraiwan Sirimahachai, Thitima Rujiralai, Sensitive colorimetric detection of ascorbic acid based on seed mediated growth of sodium alginate reduced/stabilized gold nanoparticles, Carbohydrate Polymers, 2021, 255, 117376.

[9] Liping Lin, Yaxin Luo, Qiushuang Chen, Qingjiao Lai, Qiaoling Zheng, Redox-modulated colorimetric detection of ascorbic acid and alkaline phosphatase activity with gold nanoparticles, Luminescence, 2021, 35, 542-549.