Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Sustainable and Shaped Synthesis of MOF Composites Using PET Waste for Efficient Phosphate Removal

Elmehdi Moumen¹, Khaireddin Boukayouht¹, Soraia Elmoutchou, Said Kounbach, Samir El Hankari *

Chemical and Biochemical Sciences, Green Process Engineering, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Ben Guerir 43150, Morocco

*Corresponding author. *E-mail address:* samir.elhankari@um6p.ma (S. El Hankari). ¹ These authors contributed equally to this work.

Figure S1. Schematic illustration of The PET conversion to DST.

Equation of PET conversion and DST yield

Eq S1: $PET conversion = \{(WPET, 0 - WPET, f) \div WPET, 0\} \times 100$

Eq S2:
$$DST yield = \{WDST \div (WPET, 0 - WPET, f)\} \times 100$$

where WPET,0 is the initial weight of PET (g); WPET,f is the residual weight of PET (g); and WDST = weight of DST obtained by hydrolysis (g).

Figure S2. XRD Pattern of the synthesized DST.

Figure S3. HPLC spectrum of the synthesized DST. Purity of DST was determined by UV-HPLC method with JASCO AS-4150, using the Luna C18 (150×60 mm, 3 µm) as the solid phase, water-acetonitrile (70:30) as the mobile phase. The detection wavelength was 254 nm and the flow rate was 1.5 mL/min.

Figure S4. 1H NMR spectra of terephthalic acid prepared from waste (H₂BDC-W) and compared to the commercial one ((H₂BDC-C).

Figure S5. (a) the XRD pattern and (b) FTIR spectrum of Fe-DST (110 $^{\circ}$ C) Zr-DST (RT) and Al-DST (RT)

Figure S6. Figure 3: EDX mapping images of synthesized (a)) Fe-DST (RT); (b) Zr-DST (120°C) and (c) Al-DST (220°C).

Figure S7. picture of the lake where the real water was taken (IFRAN, MOROCCO)

 Table S1: Kinetic parameters of the pseudo-first order and pseudo-second models for PETbased MOFs

Adsorbents	Pseudo-first-order kinetic			Pseudo-second-order kinetic		
	qe(mg/g)	$K_1(mg/g)$	R ²	qe(mg/g)	K ₂	R ²
Fe-DST(RT)	2.2174	0.4186	0.8111	2.3863	0.278	0.9733
Zr-DST(120°C)	2.2926	0.34869	0.8218	2.34586	0.497	0.9838

Table S2: Isotherm parameters of the Langmuir and Freundlich models for PET-based MOFs

Adsorbents	Langmuir model			Freundlich model		
	k _L (L/mg)	$q_m (mg/g)$	R ²	$K_{\rm F} ({\rm mg/g})$	n	R ²
Fe-DST(RT)	0.3352	72.162	0.9502	21.3212	3.1546	0.8738
Zr-DST(120°C)	0.4611	66.6379	0.9829	19.6864	3.0479	0.9487