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31 Fig. S2. (A) EIS spectra for different electrodes (Bare and modified) performed in [Fe(CN)¢]> 7+ in

32 0.1 M KCl as electrolyte; (inset) Randel’s equivalent circuit in EIS studies.
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35 Fig. S3. (A) CV curves for different electrodes (Bare and modified) performed in [Fe(CN)¢]*/#"in

36 0.1 M KCl as electrolyte.
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38 Fig. S4. CV profile obtained by varying scan rates from 0.02-0.2 Vs-! at (A) Gd-MoOe«/SPCE, (C)

39 f-CNF/SPCE, and (E) Gd-MoO«/f-CNF/SPCE; (B, D, and F) corresponding calibrated plot of the
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40 square root of scan rate versus anodic and cathodic peak currents; All the above experiments were

41 performed in [Fe(CN)s]*7#7in 0.1 M KCl as electrolyte.
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Fig. S5. (A) CV profile obtained by varying scan rates from 0.02-3.2 Vs at Gd2MoOe/f-
CNF/SPCE; (B) Calibrated plot of the scan rate versus anodic peak currents; (C) log of scan rates

versus log of peak currents; All the above experiments were performed in 0.1 M PB as electrolyte.
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51 Fig. S7. Functional stability of Gd2MoO«/f-CNF/SPCE analyzed over 50 continuous CV cycles.
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53 Fig. S8. (A) CV curves obtained for different SPCE coated with Gd2MoO«/f-CNF composite; (B)

54 Calibrated plot of the modified electrodes versus relative current.
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56 Fig. S9. DPV plot of spiked and un-spiked addition of TRZ in orange juice sample.
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59 Fig. S10. DPV plot of spiked and un-spiked addition of TRZ in orange candy sample.
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61 Fig. S11. DPV plot of spiked and un-spiked addition of TRZ in carrot juice sample.
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Fig. S12. DPV plot of spiked and un-spiked addition of TRZ in orange ice-cream sample.
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Table S1: Recovery estimation table for real sample analysis.

Sample Added Found GC-MS Recovery (%) RSD (%)
(nmolL") DPVY DPV | GC-MS | DPV | GC-MS
(nmolL")

Orange juice 0 0 0 0 0 -
100 93 91.21 93 91.21 | 1.69 2.94
300 272 260.88 90.7 88.6 1.11 2.20

Orange candy 0 0 0 0 -
100 103.3 99.89 103.3 99.89 | 2.44 291
300 296.8 291.6 98.93 97.2 1.91 2.12

Carrot juice 0 0 0 0 -
100 96.3 93.7 96.3 93.7 231 2.77
300 279.4 263.3 93.1 87.7 2.17 2.46

Orange ice cream 0 0 0 0 0 -
100 97.4 96.84 97.4 94.84 | 3.11 3.64
300 283.6 276.73 94.5 92.2 2.92 3.34
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