Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Enhanced CO Oxidation in Porous Metal-oxide Nanoparticles Derived from MOFs

Desong Luo,^{a,b,c} Lingting Ye^{b,c,*} and KuiXie^{b,c,*}

^a College of Chemistry, Fuzhou University, Fuzhou 350108, China.

^b Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Key Laboratory of

Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences,

Fuzhou, Fujian 350002, China.

^cAdvanced Energy Science and Technology Guangdong Laboratory, 29 Sanxin North Road, Huizhou,

Guangdong 116023, China.

* Corresponding author: https://www.iceacongletics.co (K. Xie), kxie@fjirsm.ac.cn (K. Xie)

Fig. S1 Flow preparation chart of Co_3O_4 , Fe_2O_3 and Fe_3O_4 .

Fig. S2 The unit cell structure of (a) Co_3O_4 , (b) Fe_2O_3 , (c) Fe_3O_4 .

Fig. S4 TEM images of (a) MIL-101(Fe) and (b) ZIF-67(Co).

Fig. S5 HRTEM images of (a) Co_3O_4 , (b) Fe_2O_3 , (c) Fe_3O_4 .

Fig. S6 Raman spectra of (a) commercial powders Co_3O_4 , Fe_2O_3 and Fe_3O_4 . (b) Fe_2O_3 and Fe_2O_3 commercial powders

Fig. S7 XPS spectra of the porous nanoparticles after the reaction of (a) Fe 2p peaks of Fe_2O_3 and Fe_3O_4 , (b) O 1s peaks of Fe_2O_3 and Fe_3O_4 , (c) Co 2p peaks of Co_3O_4 , and (d) O 1s peaks of Co_3O_4 .

Fig. S8 XRD of porous Co_3O_4 and Fe_2O_3 nanoparticles after 48 h long period of CO oxidation.

Fig. S9 In situ DRIFTS of porous Fe_2O_3 nanoparticle under 1 vol% CO, 21 vol% O_2 and 78 vol% N_2 condition.

Fig. S10 (a) Raman spectra of Fe_2O_3 at different temperatures, (b) Schematic diagram of carbon monoxide oxidation on Fe_2O_3 surface

	Element C content (wt%)	Element N content (wt%)
Co ₃ O ₄	≤0.3	≤0.3
Fe_2O_3	≤0.3	≤0.3
Fe_3O_4	≤0.3	≤0.3

Table. S1 Elemental analysis of N and C species in porous Co_3O_4 , Fe_2O_3 and Fe_3O_4 nanoparticles.

	Before Reduction				
	$O_{latt}/(O_{latt}+O_{ads})$	O_{ads} /(O_{latt} + O_{ads})			
Co ₃ O ₄	62.33%	37.67%			
Fe ₂ O ₃	70.77%	29.23%			
Fe ₃ O ₄	76.08%	23.92%			

Table. S2 Ratio of O species in porous Co_3O_4 , Fe_2O_3 and Fe_3O_4 nanoparticles.

Catalyst	Load conten t	Reaction gas	Flow Rate (mL min ⁻¹)	Amount of catalyst used	Reaction temperature	Ref.
Co ₃ O ₄	Ag	CO/O ₂ /N ₂ =1.6/21.4/77.0	25	50mg	T100=120 °C	[1]
Co ₃ O ₄	Ce ₂ O	CO/O ₂ /N ₂ = 0.6:0.6:99.8	66.66	50mg	T99 = 192 °C	[2]
Co ₃ O ₄	SiO ₂	CO/O ₂ /N ₂ = 0.4:8:91.6	150	50mg	T50 = 158 °C	[3]
Co ₃ O ₄		CO/O ₂ /He = 5:10:85	50	20mg	T100 = 175°C	[4]
Co ₃ O ₄	Pt	CO/O ₂ /He = 2:5:43	50	10mg	T100 = ~140°C	[5]
Fe_2O_3		CO/O ₂ /(He+N ₂) = 1:10:5	150	150mg	T50 = 300°C	[6]
Fe_2O_3	pt				T100 < 200°C	
Fe ₃ O ₄		CO/O ₂ /N ₂ = 2.4:2.4:95.2	100	200mg	T20 < 300°C	[7]
Co ₃ O ₄		CO/O ₂ /N ₂ =1:21:78	50	50mg	T90 = 127°C	This
						work This
Fe ₂ O ₃		CO/O ₂ /N ₂ =1:21:78	50	50mg	T90 = 267°C	work
						This

able.	S 3	Comparison	of CO	oxidation	performances	of	different	cobalt and	iron	oxides
asici		companison	0, 00	onducion	periormanees	U 1	unicicit	cobuit unia		UNIGED

References

1. L. Li, Q. Yang, C. Zhang, J. Yan, Y. Peng and J. Li, ACS Applied Nano Materials, 2019, 2, 3480-3489.

2. C.-F. Liu, X.-F. Wang, C.-H. Wen, B. Li, C. Tang, J.-Q. Lu, M.-F. Luo and J. Chen, *Applied Surface Science*, 2023, **617**, 156572.

3. Z. Gao, D. Zhao, Q. Cheng, D. Zhao, Y. Yang, Y. Tian, T. Ding, S. Song, L. Guo and X. Li, *ChemCatChem*, 2021, **13**, 4010-4018.

4. L. Lukashuk, N. Yigit, H. Li, J. Bernardi, K. Föttinger and G. Rupprechter, *Catalysis Today*, 2019, **336**, 139-147.

5. D. Kim, D. Park, H. C. Song, B. Jeong, J. Lee, Y. Jung and J. Y. Park, ACS Catalysis, 2023, 13, 5326-5335.

6. K. Narasimharao, A. Al-Shehri and S. Al-Thabaiti, Applied Catalysis A: General, 2015, 505, 431-440.

7. D. Jain and G. Madras, Industrial & Engineering Chemistry Research, 2017, 56, 2008-2024.