Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

## Supporting information

# Zinc Peroxide as a Convenient and Recyclable Source of Anhydrous Hydrogen Peroxide and Its Application in the Peroxidation of Carbonyls

Peter S. Radulov,<sup>a</sup> Alexey A. Mikhaylov,<sup>b</sup> Alexander G. Medvedev,<sup>b</sup> Yana A. Barsegyan,<sup>a</sup> Evgeny S. Belyaev,<sup>c</sup> Victoria E. Dmitrieva,<sup>a,d</sup> Tatyana A. Tripol'skaya,<sup>b</sup> Elena A. Mel'nik,<sup>b</sup> Vera A. Vil',<sup>a</sup> Ivan A. Yaremenko,<sup>a</sup> Petr V. Prikhodchenko,<sup>b</sup> Alexander O. Terent'ev <sup>a</sup>

<sup>a</sup> N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation [phone +7 (499) 1356428; fax, +7 (499) 1355328, e-mail, <u>alterex@yandex.ru</u>]

<sup>b</sup> Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991, Moscow, Russian Federation

<sup>c</sup> Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, Leninsky prosp., 31-4, Moscow, 119071 Russian Federation,

<sup>d</sup> D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, Moscow 125047, Russian Federation

## Table of contents

| NMR spectra of peroxides 2,3,5a-c,6a-c,8,10a,b,12,14,15,17a,b                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. S1 SEM images of zinc sulfate monohydrate obtained from zinc peroxide on the 1 <sup>st</sup> (a-c) and 5 <sup>th</sup> (d-f) cycles27                                                              |
| Fig. S2 <sup>1</sup> H NMR spectra of anhydrous, 8% hydrogen peroxide- acetonitrile solution prepared, from zinc peroxide before (curve a) and after (curve b) water addition27                         |
| Fig. S3 <sup>1</sup> H NMR spectra of dry acetonitrile (a) and acetonitrile after addition of water (b)28                                                                                               |
| Fig. S4 <sup>17</sup> O NMR spectra of diethyl ether (a) and 29% hydrogen peroxide- diethyl ether solution, prepared from zinc peroxide                                                                 |
| Fig. S5 <sup>1</sup> H NMR spectra of diethyl ether (a) and 29% hydrogen peroxide- diethyl ether solution, prepared from zinc peroxide                                                                  |
| Fig. S6 SEM images of $ZnSO_4 \cdot H_2O$ obtained during reaction of $ZnO_2$ with $H_2SO_4$ in diethyl ether media (synthesis of 2+3)                                                                  |
| Fig. S7 Diffractograms of ZnSO <sub>4</sub> ·H <sub>2</sub> O powders obtained from ZnO <sub>2</sub> in Et <sub>2</sub> O media in presence of organic substrate (synthesis of 2+3) (a) and without (b) |

## NMR spectra of peroxides 2+3, 5a-c+6a-c, 8, 10a,b, 12, 14, 15, 17a,b

<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). γ-Hydroperoxy-γ-peroxylactones 2+3



#### <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). γ-Hydroperoxy-γ-peroxylactones 2+3





#### <sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). Ethyl 2-(4-chlorobenzyl)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate 5a + 6a



<sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). Ethyl 2-(4-chlorobenzyl)-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 5a+6a



<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). Ethyl 2-benzyl-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 5b+6b



#### <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). Ethyl 2-benzyl-1,5-dimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 5b+6b



<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). Ethyl 1,2,5-trimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 5c+6c



<sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). Ethyl 1,2,5-trimethyl-6,7,8-trioxabicyclo[3.2.1]octane-2-carboxylate, 5c+6c



## <sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). 7-Benzyl-1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 8



#### <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). 7-Benzyl-1,4-dimethyl-2,3,5,6-tetraoxabicyclo[2.2.1]heptane, 8



## <sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). 3a-Benzyl-3,6,7a-trimethyltetrahydro-3H,4H-3,6-epoxy[1,2]dioxolo[3,4-b]pyran, 10a



#### <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). 3a-Benzyl-3,6,7a-trimethyltetrahydro-3H,4H-3,6-epoxy[1,2]dioxolo[3,4-b]pyran, 10a



<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). 3,6,7a-Trimethyl-3a-(4-methylbenzyl)tetrahydro-3H,4H-3,6-epoxy[1,2]dioxolo[3,4-b]pyran, 10b



#### <sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). 3,6,7a-Trimethyl-3a-(4-methylbenzyl)tetrahydro-3H,4H-3,6-epoxy[1,2]dioxolo[3,4-b]pyran, 10b



<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). 5-isopropyl-3,7a-dimethyltetrahydro-3H-3,5-epoxy[1,2]dioxolo[3,4-c][1,2]dioxine, 12

<sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). 5-isopropyl-3,7a-dimethyltetrahydro-3H-3,5-epoxy[1,2]dioxolo[3,4-c][1,2]dioxine, 12



<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). 1,1-dihydroperoxycyclohexane, 14





<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). 1,1'-peroxybis(1-hydroperoxycyclohexane), 15







<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). 4-Benzyl-5-hydroperoxy-5-methyl-1,2-dioxolan-3-one, 17a



<sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). 4-Benzyl-5-hydroperoxy-5-methyl-1,2-dioxolan-3-one, 17a

<sup>1</sup>H NMR (300.13 MHz, CDCl<sub>3</sub>). 5-Hydroperoxy-5-methyl-1,2-dioxolan-3-one, 17b





<sup>13</sup>C NMR (75.48 MHz, CDCl<sub>3</sub>). 5-Hydroperoxy-5-methyl-1,2-dioxolan-3-one, 17b

**Fig. S1** SEM images of zinc sulfate monohydrate obtained from zinc peroxide on the 1<sup>st</sup> (a-c) and 5<sup>th</sup> (d-f) cycles.



**Fig. S2** <sup>1</sup>H NMR spectra of anhydrous, 8% hydrogen peroxide- acetonitrile solution prepared, from zinc peroxide before (curve a) and after (curve b) water addition.



**Fig. S3** <sup>1</sup>H NMR spectra of dry acetonitrile (a) and acetonitrile after addition of water (b).



Fig. S4 <sup>17</sup>O NMR spectra of diethyl ether (a) and 29% hydrogen peroxide- diethyl ether solution, prepared from zinc peroxide.



**Fig. S5** <sup>1</sup>H NMR spectra of diethyl ether (a) and 29% hydrogen peroxide- diethyl ether solution, prepared from zinc peroxide.



**Fig. S6** SEM images of  $ZnSO_4 \cdot H_2O$  obtained during reaction of  $ZnO_2$  with  $H_2SO_4$  in diethyl ether media (synthesis of 2+3).



**Fig. S7** Diffractograms of  $ZnSO_4 \cdot H_2O$  powders obtained from  $ZnO_2$  in  $Et_2O$  media in presence of organic substrate (synthesis of 2+3) (a) and without (b).

