Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

## **Supporting Information**

Facile One-pot synthesis of waste copper phthalocyanine-derived nanocomposite for efficiently removing dyes from wastewater.

Munazza Munshi<sup>a‡</sup>, Tanzila Khan<sup>a‡</sup>, Madhuri Bhakare<sup>a‡</sup>, Ankita Kadam<sup>a</sup>, Surajit Some<sup>a\*</sup>

<sup>a</sup>Department of Speciality Chemicals Technology, Institute of Chemical Technology, Mumbai-400019, India.

\*Corresponding Author

E-mail: sr.some@ictmumbai.edu.in

Present Address

Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India

## **Table of Contents**

| Section   | Title                                                  | Page No |  |  |
|-----------|--------------------------------------------------------|---------|--|--|
| Fig. S-1  | Structure of Copper Phthalocyanine dye.                |         |  |  |
| Fig. S-2  | Digital image of AC/Ppy/CuPc nanocomposite.            | 4       |  |  |
| E:~ C 2   | Chem Draw representation of the dyes that has          | 5       |  |  |
| Fig. S-3  | been efficiently removed.                              | 5       |  |  |
|           | Particle size distribution of AC/Ppy/CuPc              |         |  |  |
| Fig. S-4  | nanocomposite                                          | 5       |  |  |
|           | N <sub>2</sub> adsorption-desorption isotherm and pore |         |  |  |
| Fig. S-5  | size distribution curve of AC/Ppy/CuPc                 | 6       |  |  |
|           | Effect of contact time on the adsorption of MB         |         |  |  |
| Fig. S-6  | and AOG II dye onto AC/Ppy/CuPc                        | 6       |  |  |
|           | nanocomposite                                          |         |  |  |
|           | Pictorial representation of before and after 35        |         |  |  |
| Fig. S-7  | mins of contact time of MB, MG and AOG II              | 7       |  |  |
|           | with AC/Ppy/CuPc nanocomposite                         |         |  |  |
|           | Percent adsorption of MB using AC, Ppy,                | 7       |  |  |
| Fig. S-8  | CuPc and AC/Ppy/CuPc adsorbents                        | 7       |  |  |
|           | Recyclability data (%) of MB on AC/Ppy/CuPc            |         |  |  |
| Fig. S-9  | composite                                              | 8       |  |  |
|           | during 7 adsorption cycles.                            |         |  |  |
|           | Effect of ions on the removal of MB, MG, and           |         |  |  |
| Fig. S-10 | AOG II dyes using AC/Ppy/CuPc                          | 8       |  |  |
|           | nanocomposite, respectively.                           |         |  |  |
| Table 1   | Toxic effects and application of dyes                  | 9       |  |  |
|           | Pseudo first and second order kinetics models          |         |  |  |
| Table 2   | for the adsorption of MB dye on AC/Ppy/CuPc            | 10      |  |  |
|           | at 50°C.                                               |         |  |  |
|           | Pseudo first and second order kinetics models          |         |  |  |
| Table 3   | for the adsorption of MG dye on AC/Ppy/CuPc            | 10      |  |  |

|         | at 50°C.                                      |    |
|---------|-----------------------------------------------|----|
|         | Pseudo first and second-order kinetics models |    |
| Table 4 | for the adsorption of AOG II dye on           | 10 |
|         | AC/Ppy/CuPc at 50°C.                          |    |
| Table 5 | Removal capacity of various adsorbents for    | 11 |
| rable 3 | MB, MG and AOG II                             | 11 |

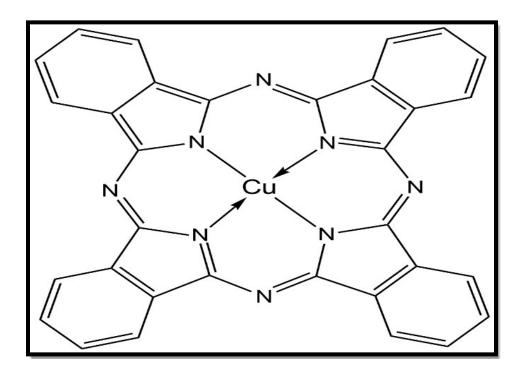



Fig.S1. Structure of Copper Phthalocyanine dye.



Fig.S2. Digital image of AC/Ppy/CuPC nanocomposite

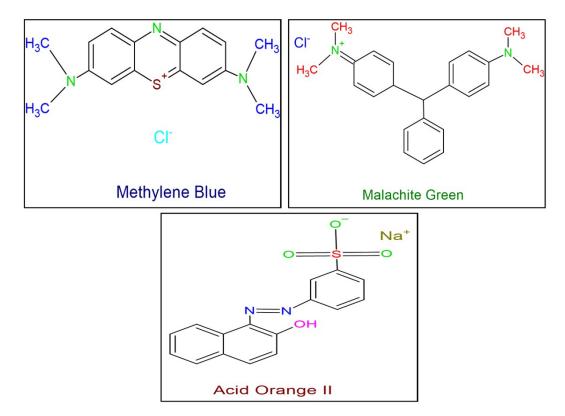



Fig.S3 Chem draws a representation of the dyes that have been efficiently removed.

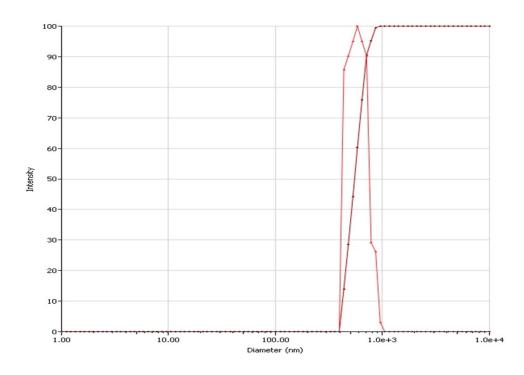



Fig.S4. Particle size distribution of AC/Ppy/CuPc nanocomposite

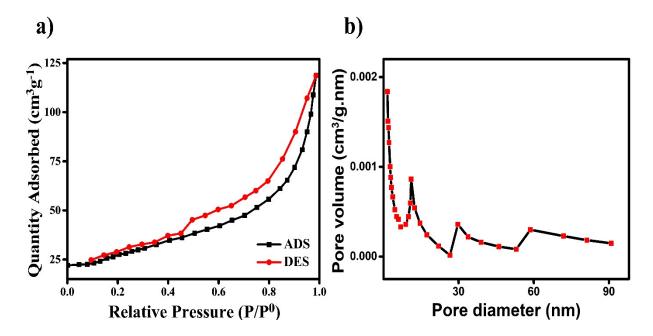
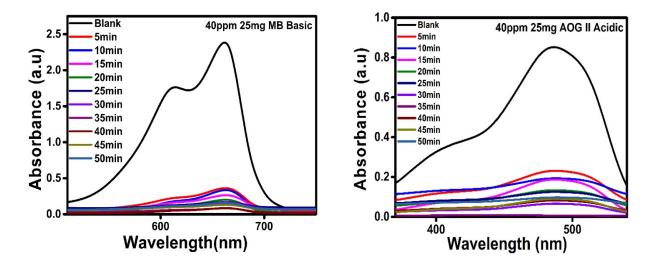




Fig.S5. a)  $N_2$  adsorption-desorption isotherm and b) Pore size distribution curve of AC/Ppy/CuPc



**Fig S6.** Effect of contact time on the adsorption of MB and AOG II dye onto AC/Ppy/CuPc nanocomposite: Mass of adsorbent = 25 mg, Volume of MB solution = 50 ml, Initial dye Concentration = 40 ppm, Temperature = 50°C



Fig.S7. Pictorial representation of before and after 35 mins of contact time of MB, MG and AOG II with AC/Ppy/CuPc nanocomposite

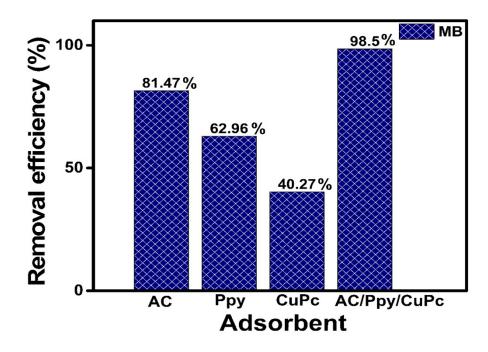



Fig S8. Percent adsorption of MB using AC, Ppy, CuPc and AC/Ppy/CuPc adsorbents

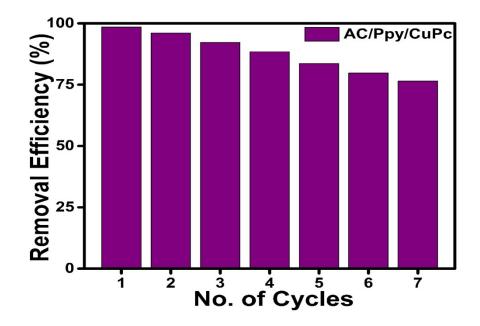



Fig S9. Recyclability data (%) of MB on AC/Ppy/CuPc composite during 7 adsorption cycles.

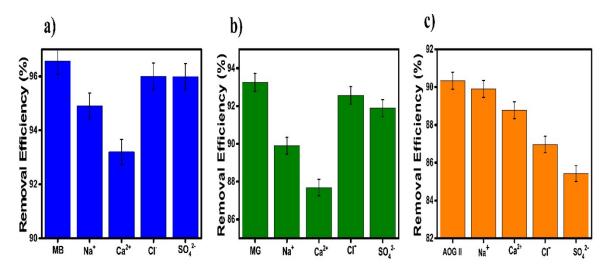



Fig S10 a), b), and c) effect of ions on the removal of MB, MG, and AOG II dyes using AC/Ppy/CuPc nanocomposite, respectively.

| Type of<br>dye | Name of dye        | Toxic effects                                                                                                                                                                              | Application                                                                                                                                                                                                            | Ref |
|----------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Anionic        | Acid orange<br>II  | Upper respiratory tract<br>irritations; severe headaches,<br>dizziness, nausea, and loss of<br>bone marrow leading to<br>anaemia. It is carcinogenic in<br>nature and can lead to tumours. | It is extensively<br>used for dying a variety of<br>materials such as nylon,<br>aluminium,<br>Detergents, cosmetics,<br>wool, and silk.                                                                                | [1] |
|                | Methylene<br>blue  | Eye burn, breathing<br>problems with a burning<br>sensation,<br>vomiting, nausea, and profuse<br>sweating                                                                                  | Colouring of silk, cotton,<br>and wood.                                                                                                                                                                                | [2] |
| Cationic       | Malachite<br>green | Damages the kidneys, heart, and<br>liver<br>Lesions on the eyes, skin, lungs,<br>and bones.                                                                                                | Colouring cotton, paper,<br>jute, silk, wool, acrylic, and<br>leather products. It is also<br>used for colouring food<br>agents, food additives,<br>medicinal disinfectants,<br>commercial fish-hatching<br>industries | [2] |

 Table S1. Toxic effects and application of dyes.

| Concent<br>ration | Pseudo-first order |                |                       | Pseudo                | rder           |                       |
|-------------------|--------------------|----------------|-----------------------|-----------------------|----------------|-----------------------|
| (ppm)             | $q_e(mg/g)$        | $\mathbf{k_1}$ | <b>R</b> <sup>2</sup> | q <sub>e</sub> (mg/g) | $\mathbf{k}_1$ | <b>R</b> <sup>2</sup> |
| 20                | 0.3250             | 0.1248         | 0.0842                | 53.4759               | 0.0168         | 0.9986                |
| 30                | 1.8593             | 0.0083         | 0.0125                | 55.8659               | 0.1104         | 0.9920                |
| 40                | 0.0288             | 0.1538         | 0.4775                | 85.4700               | 0.0092         | 0.9960                |
| 50                | 0.0085             | 0.1605         | 0.3393                | 60.2409               | 0.0231         | 0.9638                |

**Table S2:** Pseudo first and second order kinetics models for the adsorption of MB dye on AC/Ppy/CuPc at 50°C.

**Table S3.** Pseudo first and second order kinetics models for the adsorption of MG dye on AC/Ppy/CuPc at 50°C.

| Concent<br>ration | Pseudo-first order    |                |                       | Pseudo-second order   |                       |                       |  |
|-------------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| (ppm)             | q <sub>e</sub> (mg/g) | $\mathbf{k}_1$ | <b>R</b> <sup>2</sup> | q <sub>e</sub> (mg/g) | <b>k</b> <sub>1</sub> | <b>R</b> <sup>2</sup> |  |
| 20                | 6.0325                | 0.0336         | 0.103                 | 34.72222              | 0.095338              | 0.999                 |  |
| 30                | 0.4472                | 0.1075         | 0.0724                | 64.10256              | 0.017383              | 0.999                 |  |
| 40                | 0.1017                | 0.1409         | 0.2839                | 47.16981              | 0.007214              | 0.9857                |  |
| 50                | 0.5787                | 0.0852         | 0.0521                | 34.01361              | 0.036625              | 0.9917                |  |

**Table S4:** Pseudo first and second-order kinetics models for the adsorption of AOG II dye on AC/Ppy/CuPc at 50°C.

| Concentrat |                       | udo-first or   | der                   |                       | Pseudo-second order |                |  |
|------------|-----------------------|----------------|-----------------------|-----------------------|---------------------|----------------|--|
| ion (ppm)  | q <sub>e</sub> (mg/g) | $\mathbf{k}_1$ | <b>R</b> <sup>2</sup> | q <sub>e</sub> (mg/g) | k <sub>1</sub>      | R <sup>2</sup> |  |
| 20         | 0.8974                | -0.1082        | 0.2684                | 36.9004               | 0.0556              | 0.9652         |  |
| 30         | 0.00017               | 0.3740         | 0.5206                | 71.94                 | 0.0070              | 0.9756         |  |
| 40         | 0.0326                | 0.1568         | 0.4604                | 90.0901               | 0.0067              | 0.9951         |  |
| 50         | 0.0087                | 0.1515         | 0.4203                | 84.7457               | 0.0070              | 0.9951         |  |

| Composite                                                                       | Conc<br>(mg/L) | Dose<br>(g) | Volume<br>(ml) | Percent<br>efficiency<br>(%) | q <sub>e</sub><br>(mg/g) | Dyes               | Contact<br>time<br>(mins) | Ref           |
|---------------------------------------------------------------------------------|----------------|-------------|----------------|------------------------------|--------------------------|--------------------|---------------------------|---------------|
| PPy-coated cotton textile                                                       | 50             | 0.05        | 50             | 96                           | 6.83                     | MB                 | 1440                      | (3)           |
| (CuPc/Fe <sub>3</sub> O)                                                        | 50             | 0.05        | 50             | 78.7                         | -                        | MB                 | 120                       | (4)           |
| Ball clay –<br>Manganese<br>dioxide<br>nanocompos<br>ite                        | 10             | 0.8         | 50             | 82                           | 58.47                    | MG                 | 70                        | (5)           |
| Activated<br>carbon<br>produced<br>from<br>Parthenium<br>hysterophoru<br>s stem | 100            | 2           | 100            | 91                           | 11.37                    | MB                 | 100                       | (6)           |
| AC/PPY/<br>CuPc                                                                 | 40<br>30<br>40 | 0.025       | 50             | 98.50<br>95.85<br>93.67      | 135.13<br>94.34<br>106.3 | MB<br>MG<br>AOG II | 35                        | This<br>study |

 $\textbf{Table S5}. \ \textbf{Removal capacity of various adsorbents for MB, MG and AOG II}$ 

## **References:**

- Joaquim Pedro Silva, Sónia Sousa, José Rodrigues, Helena Antunes, John J. Porter, Isolina Gonçalves, Suzana Ferreira-Dias, Adsorption of acid orange 7 dye in aqueous solutions by spent brewery grains, Separation and Purification Technology,2004, 40 (3), 309-315, https://doi.org/10.1016/j.seppur.2004.03.010.
- Mishra, Sneha Prabha, Amiya Ranjan Patra, and Shubhalaxmi Das. "Methylene blue and malachite green removal from aqueous solution using waste activated carbon." Biointerface Research in Applied Chemistry ,2021, 11(1) ,7410-7421. https://doi.org/10.33263/BRIAC111.74107421
- Ayad, M. M., Amer, W. A., Zaghlol, S., Minisy, I. M., Bober, P., & Stejskal, J. Polypyrrole-coated cotton textile as adsorbent of methylene blue dye. *Chemical Papers*, 2018, 72, 1605-1618. <u>https://doi.org/10.1007/s11696-018-0442-6</u>
- Wang, Kun, Li Na Dai, He Nan Li, Chang Ju, Wei Liu, and Yi Cong Jin. "Copper Phthalocyanine/Fe3O4 Nanocomposite for Photocatalytic Degradation of Methylene Blue under Visible Irradiation." Advanced Materials Research, 2011, 239–242, 2183–2186. <u>https://doi.org/10.4028/www.scientific.net/amr.239-242.2183</u>.
- Thirumoorthy K, Krishna S K, Removal of cationic and anionic dyes from aqueous phase by Ball clay – Manganese dioxide nanocomposites, Journal of Environmental Chemical Engineering, 2020, 8 (1), 2213-3437 https://doi.org/10.1016/j.jece.2019.103582.
- K. Yogesh Kumar, H.B. Muralidhara, Y. Arthoba Nayaka, J. Balasubramanyam, H. Hanumanthappa, Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution, Powder Technology, 2013, 246, 125-136, <u>https://doi.org/10.1016/j.powtec.2013.05.017</u>.