Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Facile preparation of $V_2C@VO_x$ nanosheets with excellent multi-

enzyme activity and their colorimetric sensing application

Haiyan Wang^{a,b,c*}, Cheng Liu^b, Yue Zhao^b, Xinyu Luo^b, Pengjie Yin^b, Fuyou Du^{b*} and Guangsheng Zeng^{a,b,c*}

 ^a Hunan Engineering Research Center of Research and Development of Degradable Materials and Molding Technology, Changsha University, 410022, China
^b College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China

^c Hunan Provincial engineering research center for modification and processing of low-carbon degradable materials, Changsha University, 410022, China

* Corresponding author: Tel: +86-84261506; Fax: +86-731-84261382;

E-mail address: wanghaiyan@ccsu.edu.cn (Haiyan Wang), dufu2005@126.com (Fuyou Du), guangsheng_zeng@126.com (Guangsheng Zeng)

-	-	-	
Nanoenzymes	synthesized method	synthesized condition	Ref.
CoPW ₁₁ O ₃₉	immersion method	refluxed at 80 °C for 2 h	1
poly(ethylene	photolithography	enzyme, redox mediator and	2
glycol) diacrylate		photoinitiator	
SnFe ₂ O ₄	hydrothermal method	heated to 200 °C for 15 h	3
nanoparticles			
Co–Fe nanoparticles	hydrothermal method	heated at 200 °C for 12-14 h	4
MOF@COF hybrid	solvothermal method	sequential growth	5
nanozymes			
Co-Fc@GOx	hydrothermal reaction	sonicated for 30 min and	6
		heated at 120 °C for 3 h	
V ₂ C@VO _x	hydrothermal method	heated at 140 °C for 2 h	This
nanosheets			work

Tab. S1. Comparison of synthesized methods of nanoenzymes.

Fig. S1. The SEM image of V_2AlC .

Fig. S2. The EDS analysis of $V_2C@VO_x$ nanosheets, inset is the atomic % of C, O, Al and V.

Fig. S3. (A) AFM image of as-synthesized $V_2C@VO_x$ nanosheets. (B) Their corresponding height image and (C) the data of vertical distance.

Fig. S4. UV-vis spectra of as-synthesized V_2C and $V_2C@VO_x$ nanosheets solution.

Fig. S5. FT-IR spectra of V_2C and $V_2C@VO_x$ nanosheets.

Fig. S6. XPS spectrum of V_2C and $V_2C@VO_x$ nanosheets.

Tab. S2. Content analysis of XPS fitted peaks for v_2C						
	C1s	Atomic (%)	V2p	Atomic (%)	O1s	Atomic (%)
	O-C=O	11.28 %	V-C	13.96 %	V-C-O	98.6 %
V_2C	C-C	66.47 %	$V^{4+} p_{1/2}$	23.8 %	-OH	1.4 %
	C-O	16.6 %	$V^{4+} p_{3/2}$	62.24 %		
	C-V	5.65 %				

Tab. S2. Content analysis of XPS fitted peaks for $\mathrm{V_2C}$

Tab. S3. Content analysis of XPS fitted peaks for $V_2C@VO_x$ nanosheets

	C1s	Atomic (%)	V2p	Atomic (%)	O1s	Atomic (%)
V ₂ C@VO _x	O-C=O	2.55 %	V-C	6.81 %	V-C-O	86.06 %
nanosheets	C-C	72.5 %	$V^{4+}p_{1/2}$	25.97 %	-OH	13.94 %
	C-O	24.95 %	$V^{4+}p_{3/2}$	67.22 %		

Fig. S7. The UV-vis spectra of NBT with different concentrations of $V_2C@VO_x$ nanosheets.

Fig. S8. (A) Absorption spectra of $V_2C@VO_x$ nanosheets (0.01 mg/mL)/TMB solution under airsaturated condition (a) and $V_2C@VO_x$ nanosheets (0.02 mg/mL)/TMB solution under air-saturated condition (b). (B) Absorption spectra of the solution containing TMB and $V_2C@VO_x$ nanosheets under N₂-saturated condition (a) and O₂-saturated condition (b).

Fig. S9. The UV-vis spectra of (a) $V_2C/TMB/H_2O_2$ (1.5 mM) and (b) $V_2C@VO_x/TMB/H_2O_2$ (1.5 mM). [TMB]= 0.2 mM. [$V_2C@VO_x$]=0.02 mg/mL. [V_2C]=0.02 mg/mL. The above solutions were incubated in NaAc-HAc buffer (pH 4.0, 0.2 M) at 40 °C for 5 min.

Fig. S10. UV-vis spectra for $V_2C@VO_x$ nanosheets of various concentrations. The optimum $V_2C@VO_x$ nanosheets concentration is 0.02 mg/mL for peroxidase-like activity.

Fig. S11. (A) Under optimal conditions, UV-vis spectra of TMB interaction with different H_2O_2 concentrations. The inset image shows the corresponding photograph of the solutions containing different concentrations of H_2O_2 . (B) The linear standard curve for H_2O_2 determination. Here, I_0 and I are defined as the maximum Abs. at 652 nm without or with H_2O_2 , respectively.

Sensing materials	Linear range (µM)	LODs (µM)	Ref.
Microfluidic Chip	100-500	30	7
Fe ₃ O ₄ MNPs	50-1000	30	8
Au @ Ag NRs	50-20000	39	9
N–GQDs	25-375	16	10
H ₂ TCPP-NiO	50-500	20	11
mesoporous ceria	200-1000	10	12
V ₂ C@VO _x	0.1-3000	0.08	This work

Tab. S4. Comparison of the performances among various sensing materials for the glucose detection through a colorimetric approach.

Samples	Determination (μM)	$Added (\mu M)$	Detected (μM)	Recovery (%)	RSD (%) (n=3)
		9.00	31.9	97	1.4
I 23.6	23.6	18.00	39.7	91.9	0.8
		27.00	49.9	97.3	1.9
II 28.3		9.00	38.4	104	4
	28.3	18.00	45.4	96.8	3.2
		27.00	54.3	96.6	4.9
III 70		9.00	77.6	97.3	4.2
	70.5	18.00	84.6	99.3	1.3
		27.00	94	95	3.1

Tab. S5. Determination of glucose in human serum.

Reference

- 1. Y. He, X. Li, X. Xu, J. Pan and X. Niu, J. Mater. Chem. B, 2018, 6, 5750-5755.
- A. Caliò, P. Dardano, V. Di Palma, M. F. Bevilacqua, A. Di Matteo, H. Iuele and L. De Stefano, Sensor. Actuat. B-Chem., 2016, 236, 343-349.
- L. Feng, B. Liu, R. Xie, D. Wang, C. Qian, W. Zhou, J. Liu, D. Jana, P. Yang and Y. Zhao, *Adv. Funct. Mater.*, 2021, 31, 2006216.
- 4. D. Liu, C. Ju, C. Han, R. Shi, X. Chen, D. Duan, J. Yan and X. Yan, *Biosens. Bioelectron.*, 2021, 173, 112817.
- L. Zhang, Z. Liu, Q. Deng, Y. Sang, K. Dong, J. Ren and X. Qu, Angew. Chem. Int. Edit., 2021, 60, 3469-3474.
- 6. C. Fang, Z. Deng, G. Cao, Q. Chu, Y. Wu, X. Li, X. Peng and G. Han, *Adv. Funct. Mater.*, 2020, 30, 1910085.
- 7 J. Xiao, Y. Liu, L. Su, D. Zhao, L. Zhao and X. Zhao, Anal. Chem., 2019, 91, 14803-14807.
- 8 L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, et al. *Nat. Nanotechnol.*, 2007, 2, 577-583.
- 9 L. Han, C. Li, T. Zhang, Q. Lang and A. Liu, ACS. Appl. Mater. Inter., 2015, 7, 14463-14470.
- L. Lin, X. Song, Y. Chen, M. Rong, T. Zhao, Y. Wang, Y. Jiang and X. Chen, *Anal. Chim. Acta.*, 2015, 869, 89-95.
- Q. Liu, Y. Yang, H. Li, R. Zhu, Q. Shao, S. Yang and J. Xu, *Biosens. Bioelectron.*, 2015, 64, 147-153.
- 12 M. S. Kim, J. Lee, H. T. Ahn, M. L. Kim and J. Lee, Nanoscale, 2020, 12, 1419-1424.