Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary Information

Catalytic investigation of hyaluronic acid stabilized Ag nanoparticles

as non-toxic nanocatalysts in the oxidation of morin

M. Deniz Yilmaz,^{ab*} Nezahat Gokce Ozsamur,^{bc} Sundus Erbas-Cakmak^{bc}

^a Department of Basic Sciences, Faculty of Engineering, Necmettin Erbakan University, 42140 Konya, Türkiye

^b BITAM-Science and Technology Research and Application Center, Necmettin Erbakan University, 42140 Konya, Türkiye.

^c Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, 42090 Konya, Türkiye

*Corresponding author: <u>deniz.yilmaz@erbakan.edu.tr; yilmazdnz@gmail.com</u>

Table of Contents

1.	The concentration dependent absorption spectra of HA-AgNPs	2
2.	FTIR spectra of Hyaluronic acid and HA-AgNPs	2
3.	UV-vis spectra of 1,3-diphenylisobenzofuran (DPBF) in the presence and absence of	
HA	-AgNPs	3
4.	Comparison of HA-AgNPs with other nanosystems used for the oxidation of morin	
repo	orted in the literature	4
5.	Mass spectrum of degradation products of morin	5
6.	Real-time video of the oxidation of morin in the presence of H ₂ O ₂ and HA-AgNPs	5

Fig. S1 (A) The concentration dependent UV-vis spectra of HA-AgNPs in H_2O and (B) the plot of the absorbance of HA-AgNPs at 395 nm versus the concentration.

2. FTIR spectra of Hyaluronic acid and HA-AgNPs

Fig. S2 FTIR spectra of HA and HA-AgNPs.

3. UV-vis spectra of 1,3-diphenylisobenzofuran (DPBF) in the presence and absence of HA-AgNPs

Fig. S3 UV-vis spectra of DPBF in 10 mM carbonate buffer at pH 10 at 298 K (A) in the presence of H_2O_2 (196 mM) and absence of HA-AgNPs; (B) in the presence of HA-AgNPs (4.5 μ g/mL) and absence of H_2O_2 ; (C) in the presence of both HA-AgNPs (4.5 μ g/mL) and H_2O_2 (196 mM).

4. Comparison of HA-AgNPs with other nanosystems used for the oxidation of morin reported in the literature

Catalyst	k _{app} (s ⁻¹ x 10 ⁻²)	Catalyst concentration	Morin concentration	H ₂ O ₂ concentration	Cytotoxicity, IC ₅₀	Reaction time	Ref
HA-AgNPs	1.01	4.5 μg/mL	150 μΜ	196 mM	> 40 μg/mL	250 s	This work
Que-AgNPs	0.14	16.6 μg/mL	100 μM	490 mM	47.36 μg/mL	1200 s	24
AgDENs	0.0151	490 nM	100 μM	24 mM	na	7000 s	21
CH-AuNPs	0.12	2.5 nM	100 µM	0.49 mM	> 6.8 nM	1800 s	15
Pt ₂₀ @BSA	0.80	600 nM	125 μΜ	10 mM	> 2 µM	1200 s	12
MnO _x NP	0.2	770 μg/mL	100 μM	10 mM	na	1800 s	4
Pd ₅₅ -DENs	0.384	300 nM	900 µM	50 mM	na	1800 s	10
Co ²⁺ @PEM- MSNPs	na	133 μg/mL	160 μM	980 mM	na	300 s	13

Table S1. Comparison of nanocatalysts in the oxidation of morin

5. Mass spectrum of degradation products of morin

Fig. S4 Mass spectrum of morin after the oxidation by HA-AgNPs in the presence of H_2O_2 , collected by GC-MS.

6. Real-time video of the oxidation of morin in the presence of H₂O₂ and HA-AgNPs

