Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

A novel two-dimensional cobaltporphyrin-based organic framework as a promising electrocatalyst for CO₂ reduction reaction: a computational study

Kai Gong,^a Xue-Wei Wen,^a Xuan-Feng He,^a Yu-Huai Fei,^a Jing Song^{a*} and Cong Wang^{a*}

^{a.} School of Materials Science and Engineering, Changchun University of Science and Technology, Engineering Research Center of Optoelectronic Functional Materials, Ministry of Education, Changchun 130022, China.

*Emails: songjing@cust.edu.cn; wangc813@cust.edu.cn

Computational details

The adsorption energy (Eads) for *CO intermediate on the 2D TM-PMOF was defined as E_{ads} = E_{TM-PMOF-CO} - E_{TM-PMOF} - E_{CO}, where E_{TM-PMOF-CO}, E_{TM-PMOF}, and E_{CO} are the total energy for the *CO adsorbed on the 2D TM-PMOF, the pure 2D TM-PMOF, and the CO molecule, respectively. A negative value of the E_{ads} suggests favorable adsorption. The change in Gibbs free energy (ΔG) of every elemental step was acquired by applying the computational hydrogen electrode (CHE) model proposed by Nørskov et al.^{1,2} In detail, the Gibbs free energy change is defined as ΔG = $\Delta E + \Delta E_{ZPE}$ - T $\Delta S + \Delta G_{pH} + \Delta G_{U}$, where ΔE is the electronic energy difference directly obtained by DFT calculations, ΔE_{ZPE} is the zero-point energy change, T is set at room temperature (298.15 K), and ΔS is the entropy change. The zero-point energies and entropies of adsorbed species were calculated from the vibrational frequencies, in which only the vibrational modes of adsorbate were calculated explicitly, while the catalyst substrate was fixed.³⁻⁵ The entropies and vibrational frequencies of the free molecules were taken from the NIST database.⁶ At the same time, the calculated energies, ZPE, and TS of these free molecules are listed in Table S1. ΔG_{pH} is the free energy correction of pH, calculated by $\Delta G_{pH} = 2.303 k_B T pH$ (k_B is the Boltzmann constant, and the pH value was set to zero for all the calculations here). ΔG_U is the free energy contribution related to electrode potential (U), which can be determined as $\Delta G_U = -neU$, where n is the number of electrons transferred and U is the applied electrode potential.

Figure S1. The optimized structures of intermediates corresponding to the optimal CO_2RR on the 2D Co-PMOF: (a) *COOH, (b) *CO, (c) *CHO, (d) *OCH₂, (e) *CH₂OH, (f) *OHCH₃, (g) *CH₃.

Figure S2. The optimized structures of intermediates corresponding to the optimal CO_2RR on the 2D Rh-PMOF: (a) *COOH, (b) *CO, (c) *CHO, (d) * OCH₂, (e) *CH₂OH, (f) *OHCH₃, (g) *CH₃.

Table S1. Change in Gibbs free energies (ΔG , eV) for all possible elementary steps for CO₂RR on Co-PMOF. The computed results corresponding to the optimal reduction path are marked in yellow.

Reaction pathway	ΔG/(eV)
$* + \mathrm{CO}_2 + \mathrm{H}^+ + \mathrm{e}^- \rightarrow *\mathrm{COOH}$	<mark>0.07</mark>
$* + \mathrm{CO}_2 + \mathrm{H}^+ + \mathrm{e}^- \rightarrow *\mathrm{OCHO}$	0.73
$*COOH + H^+ + e^- \rightarrow *CO + H_2O$	<mark>0.53</mark>
$*CO + H^+ + e^- \rightarrow *CHO$	<mark>-0.13</mark>
$*CO + H^+ + e^- \rightarrow *COH$	1.59
$*CHO + H^+ + e^- \rightarrow *OCH_2$	<mark>0.25</mark>
$*CHO + H^+ + e^- \rightarrow *CHOH$	0.80
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	<mark>-0.39</mark>
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{OCH}_{3}$	0.35
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{OHCH}_{3}$	<mark>-0.18</mark>
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}$	1.32
$*OHCH_3 + H^+ + e^- \rightarrow *CH_3 + H_2O$	<mark>-0.34</mark>
$^{*}\mathrm{CH}_{3} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*} + \mathrm{CH}_{4}$	<mark>-0.51</mark>

Table S2. Change in Gibbs free energies (ΔG , eV) for all possible elementary steps for CO₂RR on Rh-PMOF. The computed results corresponding to the optimal reduction path are marked in yellow.

Reaction pathway	ΔG/(eV)
$* + \mathrm{CO}_2 + \mathrm{H}^+ + \mathrm{e}^- \rightarrow *\mathrm{COOH}$	<mark>-0.03</mark>
$* + \mathrm{CO}_2 + \mathrm{H}^+ + \mathrm{e}^- \rightarrow *\mathrm{OCHO}$	0.89
$*COOH + H^+ + e^- \rightarrow *CO + H_2O$	<mark>0.63</mark>
$*CO + H^+ + e^- \rightarrow *CHO$	<mark>-0.63</mark>
$*CO + H^+ + e^- \rightarrow *COH$	1.43
$*CHO + H^+ + e^- \rightarrow *OCH_2$	<mark>0.98</mark>
$*CHO + H^+ + e^- \rightarrow *CHOH$	1.00
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{\scriptscriptstyle +} + \mathrm{e}^{\scriptscriptstyle -} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	<mark>-0.51</mark>
$^{*}\mathrm{CH}_{2}\mathrm{O} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{OCH}_{3}$	1.146
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{OHCH}_{3}$	<mark>-0.15</mark>
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}$	1.01
$*OHCH_3 + H^+ + e^- \rightarrow *CH_3 + H_2O$	<mark>-0.56</mark>
$^{*}\mathrm{CH}_{3} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*} + \mathrm{CH}_{4}$	<mark>-0.29</mark>

Table S3. The charge states analyzed by Hirshfeld charge of the three moieties for 2D Co-PMOF along the optimal reaction pathway. The moieties 1, 2, and 3 represent the Co-PMOF substrate, the CoN₄ unit, and the adsorbed $*C_xO_yH_z$, respectively. 1, 2, 3, 4, 5, 6, 7, and 8 illustrate the CO₂, *COOH, *CO, *CHO, *CH₂O, *CH₂OH, *OHCH₃, and *CH₃ intermediates along the reaction pathway.

Reaction step	Moiety 1	Moiety 2	Moiety 3
1	0.2887	-0.2857	0.0030
2	0.3786	-0.2386	-0.1389
3	0.2004	-0.2282	0.0331
4	0.2837	-0.2304	-0.0504
5	0.0703	-0.2384	0.1718
6	0.1523	-0.2275	0.079
7	0.0533	-0.2144	0.1647
8	0.2175	-0.1826	-0.0306

Supplementary References

1 J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jónsson, J. Phys. Chem. B, 2004, 46, 17886-17892.

2 J. Rossmeisl, A. Logadottir and J. K. Nørskov, Chem, Phys., 2005, 319, 178-184.

3 J. Zhao, J. X. Zhao, F. Y. Li and Z. F. Chen, J. Phys. Chem. C, 2018, 122, 19712-19721.

4 J. H. Liu, L. M. Yang and E. Ganz, J. Mater. Chem. A, 2019, 7, 3805-3814.

5 J. H. Liu, L. M. Yang and E. Ganz, *ACS Sustainable Chem. Eng.*, 2018, **6**, 15494-15502.

6 Y. R. Wang, Q. Huang, C. T. He, Y. F. Chen, J. Liu, F. C. Shen, and Y. Q. Lan, *Nat. Commun.*, 2018, **9**, 4466.