Supporting Information for

Catalytic activity of cyclobutadiene rhodium complexes in hydrosilylation and other transformations of alkynes

\author{

Abstract

A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow, 119991, Russian Federation.
 E-mail: shvydkiy@ineos.ac.ru

}

Table of contents

\qquadGeneral remarks2
Synthesis of cyclobutadiene rhodium complexes 2
Hydrosilylation reactions 6
Polymerization of phenylacetylene 13
Catalytic activity of cyclobutadiene rhodium complexes in other alkyne transformations 14
X-ray crystallography 17

General remarks

All reactions were carried out in the argon atmosphere. All products were isolated in air. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a Bruker Avance 400 or 300 spectrometer at $20^{\circ} \mathrm{C}$. Chemical shifts are reported in ppm using the residual signals of the solvents as internal standards. Reagents were purchased from Acros or Sigma-Aldrich and used as received. The complex $\left[\mathrm{Rh}(\operatorname{cod})(p\right.$-xylene) $] \mathrm{SbF}_{6}$ was synthesized similarly to the literature procedure (R. Sumitani, D. Kuwahara, and T. Mochida, Inorg. Chem. 2023, 62, 2169-2180). Column chromatography was carried out using Macherey-Nagel silica gel 60 ($0.04-0.063 \mathrm{~mm}$ particle size).

Synthesis of cyclobutadiene rhodium complexes

Synthesis of $\left[R h\left(C_{4} E t_{4}\right)\left(C_{10} H_{8}\right)\right] P F_{6}$ (4)

Complex 1a ($52 \mathrm{mg}, 0.1 \mathrm{mmol}, 1$ equiv.) was dissolved in MeCN (1.5 ml) and 5 ml of hexane was added. The 2-phase solution was stirred vigorously (for making layers mixed) for 3 hours. Then hexane phase was carefully decanted and new portion of hexane was added. After another 3 hours this procedure was repeated, and reaction was allowed to stir overnight. On the next morning hexane phase was exchanged the last time. After 3 hours hexane was decanted and MeCN was removed from the reaction flask in vacuo giving complex 3 as yellow powder. The precipitate was washed with $1 \mathrm{ml}^{\circ} \mathrm{Et}_{2} \mathrm{O}$ and 3 ml of hexane, then dried in vacuo. Then naphthalene ($600 \mathrm{mg}, 4.7 \mathrm{mmol}, 47$ equiv.) and $\mathrm{CH}_{3} \mathrm{NO}_{2}(2 \mathrm{ml})$ were added to the reaction flask and the reaction mixture was stirred 24 hours. Then $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was removed in vacuo, large amount of $\mathrm{Et}_{2} \mathrm{O}$ was added. The product was separated by centrifugation and reprecipitated from $800 \mu \mathrm{l}$ of dichloromethane by 10 ml of $\mathrm{Et}_{2} \mathrm{O}$. The precipitate was dried in vacuo giving 29.3 mg of complex $\mathbf{4}$ as yellowish powder (54% yield).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}$) : 7.91-7.87 ($\mathrm{m}, 2 \mathrm{H}$, arene), 7.82-7.78 ($\mathrm{m}, 2 \mathrm{H}$, arene), 7.62-7.58 (m , 2 H , arene), $7.06-7.02\left(\mathrm{~m}, 2 \mathrm{H}\right.$, arene), $1.89\left(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.98\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right)$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{NO}_{2}$) δ : 132.42 (arene), 128.92 (arene), 101.90 ($\mathrm{d}, \mathrm{J}=4.6 \mathrm{~Hz}$, arene), 101.00 (d, J = 3.7 Hz, arene), 99.88 (d, J = 12.0 Hz , cyclobutadiene), $19.70\left(\mathrm{CH}_{2}\right), 13.69\left(\mathrm{CH}_{3}\right)$. Signals of bridgehead carbon atoms of naphthalene were not observed because of their low intensity.

Anal. Calc. for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~F}_{6} \mathrm{PRh}$: $\% \mathrm{C}=48.90, \% \mathrm{H}=5.22$; found $\% \mathrm{C}=48.79, \% \mathrm{H}=5.32$.

Synthesis of $\left[R h\left(C_{4} E t_{4}\right)\left(P P h_{3}\right)_{2}\right] B F_{4}(5)$

The mixture of complex $\mathbf{1 b}$ ($30 \mathrm{mg}, 0.065 \mathrm{mmol}, 1$ equiv. and $\mathrm{PPh}_{3}(34 \mathrm{mg}, 0.13 \mathrm{mmol}, 2$ equiv.) in 1 ml of acetone was stirred for 3 hours. Intense dark red color appeared during the reaction. The solvent was removed in vacuo, the dark red residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ (2×10 ml). The solid was then reprecipitated from minimal amount of dichloromethane by 10 ml of $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuum to give 51 mg (89% yield) of the product as dark red powder. Crystals suitable for X -ray analysis were obtained by diffusion of $\mathrm{Et}_{2} \mathrm{O}$ vapors into the dichloromethane solution of the complex.
${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta: 7.47-7.32(\mathrm{~m}, 30 \mathrm{H}, \mathrm{Ph}), 1.50\left(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $0.99\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , acetone- d_{6}) $\delta 134.90(\mathrm{p}, \mathrm{J}=7.8 \mathrm{~Hz}, \mathrm{Ph}), 132.69$ (d, J = 9.7 Hz, Ph), 131.69 (s, Ph), 129.69 ($\mathrm{t}, \mathrm{J}=4.8 \mathrm{~Hz}, \mathrm{Ph}$), 96.36 ($\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, ~ c y c l o b u t a d i e n e)$, $19.26\left(\mathrm{~s}, \mathrm{CH}_{2}\right), 12.42\left(\mathrm{~s}, \mathrm{CH}_{3}\right) .{ }^{31}$ P NMR (162 MHz , acetone- d_{6}) $\delta: 26.21(\mathrm{~d}, \mathrm{~J}=187.9 \mathrm{~Hz}$). HRMS (ESI-TOF, m/z) calcd for $\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{P}_{2} \mathrm{Rh}$: 791.2442; found 791.2428.

${ }^{1}$ H NMR spectrum of 5

${ }^{31}$ P NMR spectrum of 5

Hydrosilylation reactions

Hydrosilylation of 1-octyne with triethylsilane, catalyzed by $\left[R h\left(C_{4} E t_{4}\right) I\right]_{2}$ (2I, entry 2)

Schlenk tube was charged with complex 1b ($2.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} . \%$) and $\mathrm{NEt}_{4} \mathrm{I}(2.6$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 2 \mathrm{~mol} . \%$), degassed and filled with argon several times. Solid reactants were dissolved in 1 ml of dichloromethane, forming dark red solution which was stirred overnight. Then 1-octyne ($74 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) and triethylsilane ($80 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) were added to the generated catalyst and the reaction mixture was stirred for 21 hours. The solvent was removed in vacuo and the reaction mixture was eluted with hexane through a plug of $\mathrm{Al}_{2} \mathrm{O}_{3}$ giving 105 mg of product as a mixture of stereoisomers (total yield 93%). The ratio of E - and Z isomers was determined by NMR spectroscopy with internal standard (dioxane): Z - 96\%, E 4\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.38\left(\mathrm{dt}, \mathrm{J}=14.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.38(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CHSiEt}_{3}\right), 2.09\left(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.41-1.21(\mathrm{~m}, 8 \mathrm{H}, \mathrm{alkyl}), 0.94\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right)$, $0.89\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$-alkyl), $0.61\left(\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{2}\right)$.

Cf. to R. Takeuchi, S. Nitta, and D. Watanabe, J. Org. Chem., 1996, 60, 3045-3051.

[^0]Hydrosilylation of 1-octyne with triethoxysilane, catalyzed by $\left[R h\left(C_{4} E t_{4}\right) I\right]_{2}(21)$
NMR tube was charged with complex 1 a ($1.4 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} . \%$) and $\mathrm{NEt}_{4} \mathrm{I}(1.5$ $\mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} . \%)$, degassed and filled with argon several times. Solid reactants were dissolved in $600 \mu \mathrm{l}$ of CDCl_{3}, forming dark red solution which was stirred overnight. Then 1octyne ($44 \mu \mathrm{l}, 0.3 \mathrm{mmol}, 1$ equiv.) and triethoxylsilane ($55 \mu \mathrm{l}, 0.3 \mathrm{mmol}, 1$ equiv.) were added to the generated catalyst and the reaction mixture was stirred overnight. The solvent was removed in vacuo and the reaction mixture was eluted with hexane through a plug of $\mathrm{Al}_{2} \mathrm{O}_{3}$ giving 23 mg of product as a mixture of stereoisomers (total yield 28\%). The ratio of E - and Z -isomers was determined by NMR spectroscopy: Z-88\%, E-12\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 6.51$ (dt, J = 14.5, $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}$), 6.42 (ddd, J = 19.9, 8.2, 4.4 Hz, 1H, E-isomer CHCH_{2}), 5.41 (dd, J = 18.8, $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}$-isomer, CHSiEt_{3}), 5.28 (dd, J = 14.1, 1.4 Hz, 1H, CHSiEt ${ }_{3}$), 3.81 (q, J = $6.9 \mathrm{~Hz}, 7 \mathrm{H}, \mathrm{E}+\mathrm{Z}, \mathrm{SiOCH}_{2}$), 2.27 (q, J = $7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{E}+\mathrm{Z}, \mathrm{CH}_{2^{-}}$ alkyl), 1.44-1.25 (m, 9H, E+Z, alkyl), $1.23\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 10 \mathrm{H}, \mathrm{E}+\mathrm{Z}, \mathrm{SiOCH}_{3}\right), 0.88(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, $\mathrm{E}+\mathrm{Z}, \mathrm{CH}_{3}$-alkyl).

Cf. to E. Alacid, and C. Najera, J. Org. Chem., 2008, 73, 6, 2315-2322.

${ }^{1} \mathrm{H}$ NMR spectrum of 1-octyne hydrosilylation with triethoxysilane with $\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{Et} \mathrm{t}_{4}\right)\right]_{2}(\mathbf{2 l})$ catalyst Hydrosilylation of 1-octyne with dimethylphenylsilane, catalyzed by $\left[R h\left(C_{4} E t_{4}\right) I I_{2}(21)\right.$

NMR tube was charged with complex 1a ($1.4 \mathrm{mg}, 0.003 \mathrm{mmol}, 1 \mathrm{~mol} . \%$) and $\mathrm{NEt}_{4} \mathrm{I}(1.5$ $\mathrm{mg}, 0.006 \mathrm{mmol}, 2 \mathrm{~mol} . \%)$, degassed and filled with argon several times. Solid reactants were dissolved in $600 \mu \mathrm{l}$ of CDCl_{3}, forming dark red solution which was stirred overnight. Then 1-
octyne ($44 \mu \mathrm{l}, 0.3 \mathrm{mmol}, 1$ equiv.) and dimethylphenylsilane ($46 \mu \mathrm{l}, 0.3 \mathrm{mmol}, 1$ equiv.) were added to the generated catalyst and the reaction mixture was stirred overnight. Then dioxane was added to the NMR tube as an internal standard, total yield and ratio of stereoisomers were determined by NMR spectrum: total yield - 74\%; Z - 95\%, E - 5\%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.59-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{E}+\mathrm{Z}, \mathrm{Ph}), 7.37-7.34(\mathrm{~m}, 3 \mathrm{H}, \mathrm{E}+\mathrm{Z}, \mathrm{Ph}), 6.55-$ 6.35 (m, 1H, Z-isomer, CHCH_{2}), 6.15 (dt, J = 18.6, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}$-isomer, CHCH_{2}), 5.77 (dt, J = 18.6, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{E}$-isomer, $\mathrm{CHSiMe}_{2} \mathrm{Ph}$), 5.64 (dq, J = 13.9, $1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Z}$-isomer, CHSiMe 2 Ph), 2.06 (q, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{E}+\mathrm{Z}, \mathrm{CH}_{2}$-alkyl), 1.33-1.17 (m, 8H, E+Z, alkyl), 0.88 (t, J = 6.9 Hz, 3H, E+Z, CH ${ }_{3}$-alkyl), $0.39\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{E}+\mathrm{Z}, \mathrm{SiCH}_{3}\right)$.

Cf. to H. Yoshida, Y. Izumi, Y. Hiraoka, K. Nakanishi, M. Nakamoto, S. Hatano, and M. Abe, Dalton Trans., 2022, 51, 6543-6546.

${ }^{1} \mathrm{H}$ NMR spectrum of 1-octyne hydrosilylation with dimethylphenylsilane with $\left[\mathrm{Rh}^{\left.\left(\mathrm{C}_{4} E t_{4}\right) I\right]_{2}(2 I)}\right.$ catalyst

Hydrosilylation of 1-octyne with triethylsilane, catalyzed by $\left[R h\left(C_{4} E t_{4}\right) C I\right]_{2}(21$, entry 3)
Schlenk tube was charged with complex 1b ($2.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} . \%$) and $\mathrm{NBnEt}_{3} \mathrm{Cl}$ ($1.3 \mathrm{mg}, 0.0055 \mathrm{mmol}, 1.1 \mathrm{~mol} . \%$), degassed and filled with argon several times. Solid reactants were dissolved in 1 ml of dichloromethane, forming dark red solution which was stirred overnight. Then 1-octyne ($74 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) and triethylsilane ($80 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) were added to the generated catalyst and the reaction mixture was stirred for 41 hours. The solvent was removed in vacuo and the reaction mixture was eluted with hexane through a plug of $\mathrm{Al}_{2} \mathrm{O}_{3}$ giving 106 mg of product as a mixture of stereoisomers (total yield 94\%). The ratio
of isomers was determined by NMR spectroscopy with internal standard (dioxane): $\alpha-90 \%, \mathrm{E}-$ 10%. Traces of Z-isomer were detected by mass-spectrometry.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.45-5.20\left(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 2.04-1.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$-alkyl), 1.40$1.20\left(\mathrm{~m}, 8 \mathrm{H}\right.$, alkyl), $1.00-0.86\left(\mathrm{~m}, 9 \mathrm{H}+3 \mathrm{H}, \mathrm{SiCH}_{3}+\mathrm{CH}_{3}\right.$-alkyl), $0.53\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{SiCH}_{2}\right)$.

Cf. to G. De Bo, G. Berthon-Gelloz, B. Tinant, and I. E. Marko, Organometallics, 2006, 25, 18811890.

${ }^{1} \mathrm{H}$ NMR spectrum of 1-octyne hydrosilylation with $\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Cl}\right]_{2}(\mathbf{2 C l})$ catalyst

Hydrosilylation of 1-octyne with triethylsilane, catalyzed by $\left[R h\left(C_{4} E t_{4}\right)\left(P P h_{3}\right)_{2}\right] B F_{4}$ (5, entry 5)
Schlenk tube was charged with complex 5 ($4.4 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} . \%$), degassed and filled with argon several times. After that 1-octyne ($74 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) and triethylsilane ($80 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) were added and the reaction mixture was stirred for 1 hour. Then acetone was removed in vacuo and the reaction mixture was eluted with hexane through a plug of $\mathrm{Al}_{2} \mathrm{O}_{3}$. The yield and the ratio of E - and Z-isomers was determined by NMR spectroscopy with internal standard (dioxane). Total yield >99\%, E-94\%, Z - 6\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 5.98\left(\mathrm{dt}, J=18.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 5.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHSiEt}_{3}\right)$, 2.07 ($\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}$-alkyl), 1.30-1.18 (m, 8H, alkyl), $0.88\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.84$ (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$-alkyl), $0.50\left(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{2}\right)$.

Cf. to R. Takeuchi, S. Nitta, and D. Watanabe, J. Org. Chem., 1996, 60, 3045-3051.

${ }^{1} \mathrm{H}$ NMR spectrum of 1-octyne hydrosilylation with $\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ as a catalyst

Hydrosilylation of phenylacetylene with triethylsilane, catalyzed by $\left[R h\left(C_{4} E t_{4}\right) I\right]_{2}$ (2I)
Schlenk tube was charged with complex 1b ($2.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} . \%$) and $\mathrm{NEt}_{4} \mathrm{I}(2.6$ $\mathrm{mg}, 0.01 \mathrm{mmol}, 2 \mathrm{~mol} . \%)$, degassed and filled with argon several times. Solid reactants were dissolved in 1 ml of dichloromethane, forming dark red solution which was stirred overnight. Then phenylacetylene ($55 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) and triethylsilane ($80 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) were added to the generated catalyst and the reaction mixture was stirred for 21 hours. The solvent was removed in vacuo and the reaction mixture was eluted with hexane through a plug of $\mathrm{Al}_{2} \mathrm{O}_{3}$ giving 105 mg of product as a mixture of stereoisomers (total yield 96%). The ratio of $\mathrm{E}-$ and Z-isomers was determined by NMR spectroscopy with internal standard (dioxane): Z - 60\%, $E-40 \%$. Traces of α-isomer (c.a. 5%) were also detected.

Z-Triethyl(2-phenylvinyl)silane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.38-7.18$ ($\mathrm{m}, 5 \mathrm{H}, \mathrm{Ph}$), 5.50 ($\mathrm{d}, \mathrm{J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHPh}$), $5.81\left(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHSiEt}_{3}\right), 0.92\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) 0.60$ (q, J = 7.9 Hz, 6H, SiCH 2).

Cf. to H. Liang, Y.-X. Ji, R.-H. Wang, Z.-H. Zhang, and B. Zhang, Org. Lett. 2019, 21, 2750-2754.

E-Triethyl(2-phenylvinyl)silane. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$: 7.38-7.18 (m,5H, Ph$), 6.94(\mathrm{~d}, \mathrm{~J}=$ $19.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHPh}$), $6.47\left(\mathrm{~d}, \mathrm{~J}=19.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHSiEt}_{3}\right), 1.04\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.71(\mathrm{q}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{2}$).

Cf. to N. V. Shvydkiy, K. V. Rimskiy, D. S. Perekalin, Appl. Organomet. Chem. 2023, 37, e7008.

${ }^{1} \mathrm{H}$ NMR spectrum of phenylacetylene hydrosilylation with triethylsilane with $\left[\mathrm{Rh}^{\left.\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right)\right]_{2}(\mathbf{2 I})}\right.$ catalyst

Hydrosilylation of phenylacetylene with triethylsilane, catalyzed by $\left[\mathrm{Rh}\left(\mathrm{C}_{4} E t_{4}\right) \mathrm{Cl}\right]_{2}(2 \mathrm{Cl})$
Schlenk tube was charged with complex $\mathbf{1 b}$ ($2.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} . \%$) and $\mathrm{NBnEt}_{3} \mathrm{Cl}$ ($1.3 \mathrm{mg}, 0.0055 \mathrm{mmol}, 1.1 \mathrm{~mol} . \%$), degassed and filled with argon several times. Solid reactants were dissolved in 1 ml of dichloromethane, forming dark red solution which was stirred overnight. Then phenylacetylene ($55 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) and triethylsilane ($80 \mu \mathrm{l}, 0.5 \mathrm{mmol}$, 1 equiv.) were added to the generated catalyst and the reaction mixture was stirred for 21 hours. The solvent was removed in vacuo and the reaction mixture was eluted with hexane through a plug of $\mathrm{Al}_{2} \mathrm{O}_{3}$ giving 106 mg of product as a mixture of stereoisomers (total yield 97%). The ratio of E - and Z -isomers was determined by NMR spectroscopy with internal standard (dioxane): Z-40\%, E-40\%, α-isomer - 20\%.

Z-Triethyl(2-phenylvinyl)silane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 7.38-7.14 (m, 5H, Ph), $5.50(\mathrm{~d}, \mathrm{~J}=$ $15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHPh}), 5.78\left(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHSiEt}_{3}\right), 0.89\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) 0.57(\mathrm{q}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{2}$).

Cf. to H. Liang, Y.-X. Ji, R.-H. Wang, Z.-H. Zhang, and B. Zhang, Org. Lett. 2019, 21, 2750-2754.

E-Triethyl(2-phenylvinyl)silane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.38-7.14$ (m, 5H, Ph), 6.92 (d, J = $19.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHPh}), 6.45\left(\mathrm{~d}, \mathrm{~J}=19.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHSiEt}_{3}\right), 1.01\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.68(\mathrm{q}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{2}$).

Cf. to N. V. Shvydkiy, K. V. Rimskiy, D. S. Perekalin, Appl. Organomet. Chem. 2023, 37, e7008.
Triethyl(1-phenylvinyl)silane (α-isomer). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta: 7.38-7.14(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 5.89$ ($\mathrm{d}, \mathrm{J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $5.59\left(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right.$), $0.94\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.58(\mathrm{q}, \mathrm{J}=7.9$ $\mathrm{Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{2}$).

Cf. to B. G. Rocha, E. A.Valishina, R. S. Chay, M. F. C. G. da Silva, T. M. Buslaeva, A. J.Pombeiro, K. V. Luzyanin, J. Catal., 2014, 309, 79.

 \qquad
${ }^{1} \mathrm{H}$ NMR spectrum of phenylacetylene hydrosilylation with triethylsilane with $\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Cl}\right]_{2}(2 \mathrm{Cl})$ catalyst

Hydrosilylation of phenylacetylene with triethylsilane, catalyzed by $\left[R h\left(C_{4} E t_{4}\right)\left(P P h_{3}\right)_{2}\right] B F_{4}(5)$
Schlenk tube was charged with complex 5 ($4.4 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} . \%$), degassed and filled with argon several times. Solid reactants were dissolved in 1.5 ml of acetone, forming dark red solution. After that phenylacetylene ($55 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) and triethylsilane ($80 \mu \mathrm{l}, 0.5$ $\mathrm{mmol}, 1$ equiv.) were added and the reaction mixture was stirred for 1 hour. Then acetone was removed in vacuo and the reaction mixture was eluted with hexane through a plug of $\mathrm{Al}_{2} \mathrm{O}_{3}$. The major product was the phenylacetylene polymer (c.a. 80\%), the yield of hydrosilylation products was less than 20%. The ratio of E - and Z-isomers was determined by NMR spectroscopy: E80\%, Z - 20\%.

E-Triethyl(2-phenylvinyl)silane. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 7.38-7.14(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}), 6.92$ (d, J = $19.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHPh}$), $6.45\left(\mathrm{~d}, \mathrm{~J}=19.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHSiEt}_{3}\right), 1.01\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.68(\mathrm{q}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{SiCH}_{2}$).

Cf. to N. V. Shvydkiy, K. V. Rimskiy, D. S. Perekalin, Appl. Organomet. Chem. 2023, 37, e7008.

${ }^{1} \mathrm{H}$ NMR spectrum of phenylacetylene hydrosilylation with $\left[\mathrm{Rh}\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ as a catalyst

Polymerization of phenylacetylene

Schlenk tube was charged with rhodium catalyst (1 mol.\% for entries 1-4, 0.1 mol. \% for entries 5-6), degassed and filled with argon several times. Then THF (1.5 ml), $\mathrm{Et}_{3} \mathrm{~N}(10 \mu \mathrm{l}, 0.075$ $\mathrm{mmol}, 15 \mathrm{~mol} . \%$) and phenylacetylene ($55 \mu \mathrm{l}, 0.5 \mathrm{mmol}$) were added. The reaction mixture was stirred at $30^{\circ} \mathrm{C}$ for 24 h . After that it was poured into 20 ml of MeOH with a drop of acetic acid. The yellow precipitate was separated by centrifugation and dried in vacuo giving polyphenylacetylene in 8-100\% yields.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 6.94(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ph}), 6.63(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}), 5.85(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CH})$.

Cf. to I. Saeed, M. Shiotsuki, and T. Masuda, Macromolecules, 2006, 39, 8977-8981.

Catalytic activity of cyclobutadiene rhodium complexes in other alkyne transformations
[4+2]-cycloaddition (Diels-Alder reaction) of 2,3-dimethylbutadiene and phenylacetylene

Schlenk tube was charged with complex 4 ($2.7 \mathrm{mg}, 0.005 \mathrm{mmol}, 1 \mathrm{~mol} . \%$), degassed and filled with argon several times. Then complex 4 was dissolved in dichloromethane (2 ml), 2,3dimethylbutadiene ($114 \mu \mathrm{l}, 1 \mathrm{mmol}, 2$ equiv.) and phenylacetylene ($55 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.) were added and the reaction mixture was stirred for 2 h at room temperature. The resulting solution was filtered through a plug of silica gel (eluent $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Solvent was evaporated and the residue was analyzed with ${ }^{1} \mathrm{H}$ NMR spectroscopy. Desirable product was not detected.
[2+2+2]-cycloaddition of 1,5-cyclooctadiene with 1,4-dimethoxy-2-butyne

Schlenk tube was charged with complex 4 ($8.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} . \%$), degassed and filled with argon several times. Then complex 4 was dissolved in $\mathrm{MeOH}(3 \mathrm{ml})$, 1,5cyclooctadiene ($44 \mu \mathrm{l}, 0.36 \mathrm{mmol}, 1.2$ equiv.) and 1,4-dimethoxy-2-butyne ($36 \mu \mathrm{l}, 0.3 \mathrm{mmol}, 1$ equiv.) were added and the reaction mixture was stirred for 48 h at $70{ }^{\circ} \mathrm{C}$. The solvent was evaporated and residue was purified by column chromatography (eluent - hexane/MTBE 10:1, then hexane/MTBE 5:1). Only trace amounts of the product were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy and GC-MS.
[2+2+1]-cycloaddition of N, N-bis(3-(4-methoxyphenyl)prop-2-yn-1-yl)benzenesulfonamide with CO

Schlenk tube was charged with complex $4(8.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} . \%)$ and N, N-bis($3-$ (4-methoxyphenyl)prop-2-yn-1-yl)benzenesulfonamide ($138 \mathrm{mg}, 0.3 \mathrm{mmol}$), degassed and filled with CO several times. Then dichloromethane (3 ml) was added in the flow of carbon monoxide. Dark red solution was formed. The reaction mixture was stirred for 18 h at room temperature with balloon with CO connected. Violet solution was evaporated, and the residue was purified by column chromatography (Hex/EA 3:1). The isolated residue ($\mathrm{m}=129 \mathrm{mg}$) was proven to be the starting material.

Anti-Markovnikov hydratation of 1-octyne

Schlenk tube was charged with complex 4 ($8.1 \mathrm{mg}, 0.015 \mathrm{mmol}, 5 \mathrm{~mol} . \%$) and bipyridine $(4.7 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \mathrm{~mol} . \%$), degassed and filled with argon several times. Then acetone (1 ml), 1-octyne ($44 \mu \mathrm{l}, 0.3 \mathrm{mmol}, 1$ equiv.), and water ($27 \mu \mathrm{l}, 1.5 \mathrm{mmol}, 5$ equiv.) were added and the reaction mixture was stirred overnight at $60^{\circ} \mathrm{C}$. The solvent was removed in vacuo and the residue was analyzed with ${ }^{1} \mathrm{H}$ NMR spectroscopy ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$). The formation of the product was not detected.

1,4-addition of boronic acids to unsaturated ketones

Schlenk tube was charged with complex 1b ($7 \mathrm{mg}, 0.015 \mathrm{mmol}, 3 \mathrm{~mol} . \%$) and $\mathrm{NEt}_{3} \mathrm{BnCl}(4$ $\mathrm{mg}, 0.018 \mathrm{mmol}, 3.3 \mathrm{~mol} \%)$, degassed and filled with argon several times. Then dichloromethane (1 ml) was added and the reaction mixture was stirred for 24 h . The solvent was removed in vacuo and 2 -cyclohexen-1-one ($49 \mu \mathrm{l}, 0.5 \mathrm{mmol}, 1$ equiv.), p-tolylboronic acid ($102 \mathrm{mg}, 0.75 \mathrm{mmol}, 1.5$ equiv.), 1,4-dioxane (1.5 ml), water (0.2 ml), and $\mathrm{KOH}(28 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 1$ equiv.) were added in the flow of argon. The reaction mixture was stirred for 24 h at 90 ${ }^{\circ} \mathrm{C}$. The resulting brown suspension was quenched with excess of saturated aqueous NaHCO_{3} solution. The product was extracted with EtOAc (three times), combined organic fractions were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Yield of the 3 -(p-tolyl)cyclohexan-1-one was 31%. Yield was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using 1,4-dioxane as internal standard.

X-ray crystallography

X-ray diffraction data for $\left[\left(\mathrm{C}_{4} E t_{4}\right) \mathbf{R h}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\right] \mathrm{PF}_{6}$ and $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathbf{R h}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ were collected at 100 K with a Bruker Quest D8 CMOS diffractometer, using graphite monochromated Mo-K radiation ($\lambda=0.71073 \AA$, ω-scans). Structures were solved using Intrinsic Phasing with the ShelXT ${ }^{1}$ structure solution program in Olex2 ${ }^{2}$ and then refined with the XL^{3} refinement package using Least-Squares minimization against F^{2} in the anisotropic approximation for non-hydrogen atoms. Positions of hydrogen atoms were calculated, and they were refined in the isotropic approximation within the riding model. Crystal data and structure refinement parameters are given in Table S1.

Deposition Numbers CCDC $2302268 \quad\left(\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\right] \mathrm{PF}_{6}\right)$ and 2302269 $\left(\left[\left(\mathrm{C}_{4} E \mathrm{Et}_{4}\right) \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}\right)$ contain the supplementary crystallographic data for this paper.

Table S1. Crystal data and structure refinement parameters for $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathbf{R h}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\right] \mathrm{PF}_{6}$ and $\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$.

	[($\left.\left.\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}\left(\mathrm{C}_{10} \mathrm{H}_{8}\right)\right] \mathrm{PF}_{6}$	$\left[\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) \mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{BF}_{4}$
Empirical formula	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{PRh}$	$\mathrm{C}_{48} \mathrm{H}_{50} \mathrm{BF}_{4} \mathrm{P}_{2} \mathrm{Rh}$
Formula weight	540.32	878.54
T, K	100	100
Crystal system	Monoclinic	Monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$	$\mathrm{P} 2_{1} / \mathrm{n}$
Z	8	4
a, \AA	15.9090(14)	10.7322(2)
b, Å	17.5486(17)	26.2556(5)
c, Å	15.8848(16)	14.7421(3)
$\alpha{ }^{\circ}$	90	90
$\beta,{ }^{\circ}$	90.557(6)	96.0350(10)
$\gamma,{ }^{\circ}$	90	90
V, \AA^{3}	4434.5(7)	4131.01(14)
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.619	1.413
$\begin{aligned} & \text { Linear absorption, } \mu \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	8.98	5.43
F(000)	2192	1816
$2 \theta_{\text {max }}{ }^{\circ}$	52	56

Reflections measured	30655	51256
Independent reflections	7725	9965
Observed reflections [I>	$65(I)]$	65717
Parameters	0.0840	509
R1	0.2683	0.0428
WR2	1.038	0.0884
GOF	$1.965 /-1.959$	1.047
$\Delta \rho_{\text {max }} / \Delta \rho_{\text {min }}\left(\mathrm{e}^{-3}\right)$		$0.534 /-0.663$

${ }^{1}$ G.M. Sheldrick. Acta Cryst. 2015, A71, pp. 3-8
${ }^{2}$ O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. J. Appl. Cryst. 2009, 42, pp. 339-341
${ }^{3}$ G.M. Sheldrick. Acta Cryst. 2008, A64, pp. 112-122

[^0]: ${ }^{1} \mathrm{H}$ NMR spectrum of 1-octyne hydrosilylation with triethylsilane with $\left[\mathrm{Rh}^{\left.\left(\mathrm{C}_{4} \mathrm{Et}_{4}\right) I\right]_{2}(\mathbf{2 I}) \text { catalyst }}\right.$

