Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplementary material

1.Experimental Section: Synthesis of RuNi@rGO, Ru@rGO and

Ni@rGO

Briefly, the fresh graphene oxide 50 mg was dispersed in 5ml deionized water and sonicated for 2h. NiCl₂·6H₂O (0.06 mmol) chemicals were prepared into 10 mg/ml solution. They were stirred for 1 h until the mixture were dispersed fully. Afterward, stirring vigorously at room temperature for 12h. 150 uL RuCl₃·3H₂O was dispersed into 10 mg/mL aqueous solution and slowly added dropwise, with violently magnetically stirred for 5h. Then add saturated sodium borohydride, acting as a reducing agent to the solution and keep stirring for 5 h. After reaction, the product was collected by centrifugation, washed with deionized water several times and finally the solution was freeze-dried overnight. Before the catalytic evaluation, the as-synthesized samples were reduced in a H₂/Ar mixed gas at 700 °C (heating rate: $2^{\circ}C \cdot min^{-1}$) for 2 h, followed by cooling to the room temperature in H_2/Ar mixed gas. Moreover, the temperature was dropped to room temperature, leading to a uniformly dispersed RuNi SAA nanoparticles embedded in rGO framework. The preparation methods of pure Ru@rGO and Ni@rGO are similar to the above, except that NiCl₂·6H₂O or RuCl₃·3H₂O are not added, respectively.

2.TOF values were calculated by the following equation

The Number of catalytic active sites was calculated by the underpotential deposition of Cu (Cu-upd) method. 0.5 M H₂SO₄ + 1 mM CuSO₄ solution was purged by nitrogen for 20 minutes before the tests. In order to clean the working electrode (WE), i-t curves are scanned and tested at a voltage of 0.2 -0.4V in a 0.5 M H₂SO₄ solution. The Cu layer was deposited to the WE in 0.5 M H₂SO₄ +1 mM CuSO₄ solution, and the Cu-upd stripping voltammogram was obtained by scanning the working electrode (-0.2–0.8V vs RHE). Hence, the TOF values¹ can be calculated from LSV curve and number of Ru active sites as follows: **TOF=I/αFN**

I: I is the current (A) (the recorded current during the LSV measurements);

 α : the number of electrons transferred for products formation;

F: the Faradaic constant, 96485 C mol^{-1} ;

N: the number of catalytic active sites (mol), the N can be calculated from the charge accumulation (Q) of Cu-UPD or H adsorption/desorption following the equation: N=Q/2F.

 α is the number of transferred electrons corresponding to the semi-reaction that generates a molecular target product or consumes a molecular target reactant: the coefficient before the reaction equation e⁻. Since HER is a twoelectron catalytic process, $\alpha = 2$.

3.Density Functional Theory Calculation

The Ni model structure was obtained from prior work.² In this study, the Vienna Ab Initio Simulation Package (VASP) and the projector augmented wave (PAW) method were employed to perform spin-polarized density functional theory (DFT) calculations.³ The Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) was used to describe the electronic exchange-correlation energy.⁴ A kinetic energy cutoff of 450 eV was applied. For structural optimizations and electron property calculations, the Brillouin zone was sampled using $7 \times 7 \times 7$ and $3 \times 3 \times 1$ k-point grids, respectively. The convergence criteria for electronic structure iterations were set to 10^{-4} eV, while the force iterations were set to 0.02 eV/Å. In the z-direction, a vacuum space larger than 15 Å was employed to prevent interactions between periodic images.

The Gibbs free energy of each elementary step can be shown in the following equation.

$$\Delta G_n = \Delta E + T \Delta S - Z P E$$

Where G is the Gibbs free energy, E is the electronic energy form DFT calculations, ZPE is zero-point energy, T is temperature of 300 K, and ΔS is the change in entropy.

4. Supplementary Figures and Tables

Figure S1 Current difference at different scan rate for the estimation of doublelayered capacitance of (a), (b) and (c) for HER in 1 M KOH.

Figure S2 (a) Full range scan of Cu deposition and splitting on RuNi@rGO and Cuupd stripping voltammogram; (b) TOFs curves of RuNi@rGO; (c and d) TOFs curves of RuNi@rGO and Ni@rGO to the HER with 20 wt% Pt/C.

Figure S3 Comparison of the HER polarization curve of the RuNi@rGO electrocatalyst before and after 2000th cycles.

Figure S4 Current difference at different scan rate for the estimation of double-layered capacitance of (a), (b) and (c) for OER in 1 M KOH.

Figure S5 Comparison of the OER polarization curve of the RuNi@rGO electrocatalyst before and after 2000th cycles.

Figure S6 the structural models of three different catalytic environments on the surface of RuNi, namely RuNi -1, RuNi-2 and RuNi-3.

Figure S7 (a-d) The pCOHP plots of the Ni–H、RuNi-1-H、RuNi-2-H and RuNi-3-H bond in RuNi@rGO.

Figure S8 (a-d) The pCOHP plots of the Ni–O、RuNi-1-O 、RuNi-2-O and RuNi-3-O bond in RuNi@rGO.

Figure S9 Differential charge density for RuNi@rGO (the ink blue and purple ball represent the Ni and Ru, respectively).

No.	Catalyst	HER ηj =10 (mV)	HER Tafel slop (mV dec ⁻¹)	ΟER ηj =10 (mV)	OER Tafel slop (mV dec ⁻¹)	Reference
1	RuNi@rGO	14	32	240	57	This work
2	RuNP@RuNx- OFC/NC	19	35.5	-	-	Appl. Catal. B., 2022 , 307, 121193.
3	Ru/Co–N–C- 800 °C	19	27.8	276	55.7	Adv. Mater. 2022 , 34, 2110103.
4	Ni₅P₄-Ru/CC	54	52	-	-	Adv. Mater. 2020 , 32, 1906972.
5	Ru/Zn ₃ V ₃ O ₈	70	50.6	250	81.9	Nanoscale, 2021 , 13, 1745 7-17464.
6	Ru ₂ Ni ₂ SNs/C	-	_	310	75	Nano Energy 2018 ,47, 1.
7	Ru@Co/N- CNTs-2	48	33	-	-	ACS Sustainable Chem. Eng. 2020 , 8, 9136.
8	RuNi-NCNFs	_	_	290	_	Adv. Sci. 2020 , 7, 1901833.
9	Ru@NC	26	36	-	-	Angew. Chem., Int. Ed. 2018 , 57, 5848.
10	RuSx/S-GO	58	56	-	-	Small, 2019 , 15, 1904043
11	NiRu@NC	53	38	-	-	Dalton Trans., 2020 ,49, 13647-13654
12	RuNi/MoC@N C	13	49.4	-	-	Nanoscale, 2023 ,15, 16403-16412
13	RuNi- alloy@SC	93	96	_	-	Chemical Engineering Journal, 417 (2021) 129319
14	Ni ₂ P-Fe ₂ P/NF	-	_	222@100mA cm ⁻²	40.9	Sustainable Energy Fuels, 2022 ,6, 4477-4483
15	Co/Ru SAs-N– C	-	-	450@100mA cm ⁻²		Catal. Sci. Technol., 2022 ,12, 5435-5441
16	Ru ₂ Ni ₂ SNs/C	-	-	310	75	Nano Energy , 2018 ,47, 1.
17	2% Ru-NCO	-	_	269@100mA cm ⁻²	-	Chemical Engineering Journal 439 (2022) 135634
18	NiCo.c	85@50mA cm ⁻²	182@50mA cm ⁻²	290@20mA cm ⁻²	149	Energy Conversion and Management, 254 (2022) 115262
19	ac-NiCo(OH) ₂ /NF	_	_	320@100mA cm ⁻²	-	Journal of Colloid and Interface Science, 653 (2024) 1704–1714

 Table S1 Comparison of performance of bifunctional electrocatalysts in alkaline environments.

 Table S2 The TOF of RuNi@rGO compared with other recently reported metalbased electrocatalysts in 1 M KOH.

No.	Catalyst	TOF (H ₂ s ⁻¹)	Mass activity (A mg⁻¹)	Reference
1	RuNi@rGO	11.45@ 50mV	29@100mV	This work
2	Ru-MoS ₂ /CC	_	0.2@169 mV	Appl. Catal. B., 2019 , 249, 91-97.
3	Pt-SAs/MoSe ₂	6.21@ 50 mV	34.4@100 mV	Nat.Commun. 2021 ,12,3021.
4	RuNP-RuSA@CFN- 800	_	11.1@100 mV	Adv. Funct. Mater. 2023 , 33, 2213058.
5	Ru@C₂N	1.95@ 50 mV	_	Nat. Nanotech., 2017 , 12, 441–446.
6	Ru/N-C	0.7@ 50 mV	_	J. Mater. Chem. A, 2017, 5, 25314–25318.
7	PtSA/α-MoC _{1-x} @C	11.61@ 50 mV	26.65@100 mV	Adv. Funct. Mater. 2021 , 2108464.
8	Pt-SAs/MoSe ₂	6.21@ 50 mV	34.4@100 mV	Nat. Commun. 2021 , 12,3021.
9	Pt-Ni ASs	18.63@ 50 mV	2.80@70 mV	Adv. Mater., 2018 ,30, 1801741.

References

- Q. He, Y. Zhou, H. Shou, X. Wang, P. Zhang, W. Xu, S. Qiao, C. Wu, H. Liu, D. Liu,
 S. Chen, R. Long, Z. Qi, X. Wu and L. Song, Adv. Mater, 2022, 34, 2110604.
- 2 J. Liu, J. Wang, Y. Fo, B. Zhang, C. Molochas, J. Gao, W. Li, X. Cui, X. Zhou, L. Jiang and P. Tsiakaras, Chem. Eng. J, 2023, 454, 139959.
- 3 G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6, 15-50.
- 4 Kresse and Furthmuller, Phys. Rev., B Condens. Matter, 1996, 54, 11169-11186.