Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Modulation of supported Ni catalysts with phosphorus for the hydrogenation of diethyl oxalate to ethyl glycolate

Qihong Xue^{ab}, Zhikui Jiang^c ,Chao Wang^{ab}, Xian Kan^{ab}, Jiaming Wang^a, Jiangang Chen^{a,*}

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, PR China

^b University of Chinese Academy of Sciences, Beijing 100049, PR China

° China Shenhua Coal to Liquid Chemical Co., Ltd

*Corresponding authors. E-mail addresses: chenjg@sxicc.ac.cn(J.Chen)

Fig.S1. TEM image and EDS mapping of 13-Ni/ZrO₂.

Fig.S2. TEM image and EDS mapping of $13-Ni_3P/ZrO_2$.

Fig.S3. DEO conversion and Egly selectivity versus time on stream over the 13- Ni_3P/ZrO_2 catalyst. (A) reaction temperature 210°C, (B) reaction temperature 230°C(P=2.5MPa, H₂/DEO molar ratio=120, WHSV=1 h⁻¹)

Fig. S4. Conversion and selectivity of the 13-Ni₃P/SiO₂ catalyst under different reaction conditions. (A) reaction temperature (P=2.5MPa, H₂/DEO molar ratio=120, WHSV=1 h⁻¹), (B) WHSV (T=190°C, P=2.5MPa, H₂/DEO molar ratio=120), (C) H₂/DEO molar ratio (T=190°C, P=2.5MPa, WHSV=1 h⁻¹), (D) reaction pressure (T=190°C, WHSV= 1 h⁻¹, H₂/DEO molar ratio=120).

The stability of the catalyst was also tested. As shown in Fig. S5, no significant loss of activity and selectivity was observed during the 500 h continuous test.

Fig. S6. NH₃-TPD profiles of the (a)13-Ni/ZrO₂, (b) 13-Ni₃P/ZrO₂, (c) 6-Ni₃P/SiO₂, (d) 13-Ni/SiO₂, (e) 13-Ni₃P/SiO₂, (f) 25-Ni₃P/SiO₂.

Fig. S6. shows the NH₃-TPD profiles of the nickel-based catalyst. The lowtemperature peak centered at 120°C observed in the spectra is attributed to the adsorption peak of the SiO₂ carrier itself^[1]. The NH₃ desorption peak appearing as a shoulder at about 170°C is attributed to the adsorption at the weak acid sites. In addition, the weak adsorption peak at about 390°C is attributed to the adsorption of NH₃ on the medium-strength acid sites on the surface (Fig. S6.c-f)^[2]. The ZrO₂-loaded nickel-based catalysts did not show NH₃ desorption peaks (Fig. S6. a, b).

Fig. S7. CO₂-TPD profiles of the (a)13-Ni/ZrO₂, (b) 13-Ni₃P/ZrO₂, (c) 6-Ni₃P/SiO₂, (d) 13-Ni/SiO₂, (e) 13-Ni₃P/SiO₂, (f) 25-Ni₃P/SiO₂.

 CO_2 -TPD profiles (Fig. S7.) showed that the desorption peaks located at low temperatures (~100°C) were weakly basic sites, and the desorption peaks around 300°C were attributed to moderately strong basic sites^[3]. As shown in Fig.S7.a,b and c-f, the moderate intensity basicity peak site is weakened after phosphorylation. Taking into account that the actual reaction temperature is around 200 °C, the medium-strength basicity plays a major role in DEO hydrogenation. However, the medium-strength basicity almost disappeared after phosphatization, indicating that the surface basicity has a relatively small effect on the catalyst reaction performance.

Catalyst	Т	Р	H ₂ /DMO	WHSV	DMO/DEO	MG/Egly	Lifetime	Ref
	(°C)	(Mpa)	(mol/mol)	$(gg_{cat}^{-1}h^{-1})$	Conv.(%)	Sel.%	(h)	
Ni ₂ P/TiO ₂	230	3.0	300	0.1	100	76	3600	[4]
Ni ₃ P/Ni-Foam	230	2.5	180	0.44	99.5	97	1000	[5]
Ni ₃ P/RB-MSN	190	2.5	90	0.44	100	86	500	[1]
13-Ni ₃ P/SiO ₂	210	2.5	120	1.0	100	67	No data	This
13-Ni ₃ P/SiO ₂	190	2.5	120	1.0	94	72	500	work

Table S1. Comparison of the $13-Ni_3P/SiO_2$ catalyst with the reported ones for the DMO/DEO-to-MG/Egly reaction.

References

- [1] G. Zhao, ACS Sustainable Chemistry & Engineering **2021**, 9, 16719-16729.
- a)Y. Zhu, X. Kong, X. Li, G. Ding, Y. Zhu, Y.-W. Li, Acs Catalysis 2014, 4, 3612-3620; b)P.
 Wu, J. Zhang, Z. J. Huang, J. A. Chen, Fuel 2022, 324.
- [3] F. Han, H. Liu, W. Cheng, Q. Xu, *Rsc Advances* **2020**, *10*, 33620-33627.
- [4] H. Chen, J. Tan, Y. Zhu, Y. Li, *Catalysis Communications* 2016, 73, 46-49.
- [5] J. Zhu, L. Cao, C. Li, G. Zhao, T. Zhu, W. Hu, W. Sun, Y. Lu, ACS Appl Mater Interfaces 2019, 11, 37635-37643.