SUPPORTING INFORMATION

Synthesis, characterization and magnetic properties of halogenated tetranuclear cubane-like nickel(II) complexes

Mahnaz Aryaeifar^{*a*}, Hadi Amiri Rudbari^{*a*,*}, Eufemio Moreno-Pineda^{*b,c*}, José V. Cuevas-Vicario^{*d*}, Sagar Paul^{*e*}, Michael Schulze^{*e*}, Wolfgang Wernsdorfer^{*e*,*f,g*,*}, Francisco Lloret^{*h*}, Nakisa Moini^{*i*}, Olivier Blacque^{*j*}

^{a.} Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.

^b Depto. de Química-Física, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá.

^{c.} Grupo de Investigación de Materiales, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá.

^d Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos S/N, Burgos, Spain

^{e.} Physikalisches Institut, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany.

^{f.} Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

^{g.} Institute for Quantum Materials and Technology (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.

^h Departament de Química Inorganica/Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, C/ Catedrático José Beltran 2, 46980 Paterna, València, Spain.

^{*i.*} Department of Chemistry, Faculty of Physics and Chemistry Alzahra University, P.O. Box 1993891176, Vanak Tehran, Iran.

^{j.} Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.

*Corresponding authors: <u>h.a.rudbari@sci.ui.ac.ir</u>, <u>hamiri1358@gmail.com</u> (H. Amiri Rudbari); <u>wolfgang.wernsdorfer@kit.edu</u> (W. Wernsdorfer)

Figure S1. FT-IR spectra of 1, 2, 3 and 4 complexes.

Empirical formula	C ₃₆ H ₄₀ Br ₄ Cl ₄ Ni ₄ O ₁₆
Formula weight	1424.96
Temperature (K)	302(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P2 ₁ /c
Unit cell dimensions (Å, °)	a = 17.1504(12)
	b = 18.4070(14)
	c = 15.3957(12)
	$\beta = 90.952(3)$
Volume (Å ³)	4859.6(6)
Z	4
Calculated density (Mg/m ³)	1.948
Absorption coefficient (mm ⁻¹)	5.099
F(000)	2816
Theta range for data collection (°)	2.848 to 24.999
Index ranges	-20≤ h ≤20
	-21≤ k ≤21
	-18≤ l ≤18
Reflections collected	93557
Independent reflections	8553 [R _(int) = 0.1217]
Data Completeness (%)	99.9
Refinement method	Full-matrix least-squares on <i>F</i> ²
Data / restraints / parameters	8553 / 10 / 598
Goodness-of-fit on <i>F</i> ²	1.093
Final R indices [I>2σ (I)]	$R_1 = 0.0628$
	$wR_2 = 0.1064$
R indices (all data)	$R_1 = 0.1160$
	$wR_2 = 0.1339$
Largest diff. peak and hole (e.Å ⁻³)	0.810 and -0.956
CCDC number	2311186

Table S1. Crystal data and structure refinement for 4.

Table 02. Ociccica bolia	icinguis (A) and		
Ni(1)-O(1)	1.991(5)	O(10)-Ni(1)-O(9)	83.4(2)
Ni(1)-O(10)	2.030(5)	O(10)-Ni(1)-O(11)	82.2(2)
Ni(1)-O(2)	2.041(6)	O(9)-Ni(1)-O(11)	82.7(2)
Ni(1)-O(9)	2.049(5)	O(11)-Ni(2)-O(12)	83.7(2)
Ni(1)-O(11)	2.059(5)	O(11)-Ni(2)-O(10)	82.3(2)
Ni(1)-O(13)	2.113(6)	O(12)-Ni(2)-O(10)	82.9(2)
Ni(2)-O(3)	2.013(6)	O(9)-Ni(3)-O(11)	83.3(2)
Ni(2)-O(11)	2.031(5)	O(9)-Ni(3)-O(12)	81.1(2)
Ni(2)-O(12)	2.037(5)	O(11)-Ni(3)-O(12)	82.15(19)
Ni(2)-O(4)	2.043(6)	O(10)-Ni(4)-O(12)	83.3(2)
Ni(2)-O(10)	2.052(5)	O(12)-Ni(4)-O(9)	81.5(2)
Ni(2)-O(15)	2.153(6)	O(10)-Ni(4)-O(9)	83.3(2)
Ni(3)-O(5)	1.998(6)	Ni(3)-O(9)-Ni(1)	97.0(2)
Ni(3)-O(9)	2.029(5)	Ni(3)-O(9)-Ni(4)	99.0(2)
Ni(3)-O(6)	2.033(6)	Ni(4)-O(9)-Ni(1)	95.5(2)
Ni(3)-O(11)	2.057(5)	Ni(1)-O(10)-Ni(4)	96.5(2)
Ni(3)-O(12)	2.073(5)	Ni(1)-O(10)-Ni(2)	97.6(2)
Ni(3)-O(14)	2.127(6)	Ni(4)-O(10)-Ni(2)	96.2(2)
Ni(4)-O(7)	2.026(6)	Ni(2)-O(11)-Ni(3)	96.9(2)
Ni(4)-O(8)	2.033(6)	Ni(2)-O(11)-Ni(1)	97.4(2)
Ni(4)-O(10)	2.035(5)	Ni(3)-O(11)-Ni(1)	95.8(2)
Ni(4)-O(12)	2.037(5)	Ni(2)-O(12)-Ni(4)	96.6(2)
Ni(4)-O(9)	2.048(5)	Ni(2)-O(12)-Ni(3)	96.2(2)
Ni(4)-O(16)	2.087(7)	Ni(4)-O(12)-Ni(3)	97.9(2)
Ni(1)-Ni(2)	3.0724(16)		
Ni(1)-Ni(3)	3.0531(15)		
Ni(1)-Ni(4)	3.0332(15)		
Ni(2)-Ni(3)	3.0588(15)		
Ni(2)-Ni(4)	3.0407(15)		
Ni(3)-Ni(4)	3.1001(15)		

Table S2. Selected bond lengths (Å) and angles (°) for 4.

DH	Δ	DH	ΗΔ	П	∆ D_H	Δ	Symmetr	v
shorter	than the sum of v	an der Waal	s radii for 4	1				
Table	S3. Non-classical	hydrogen b	onds and	other	intermolecular	interac	tions with	distances

D—HA	D—H	НА	DA	D—H…A	Symmetry codes
C36—H36ACl2	0.96	2.69	3.543(13)	149	2-x, ½+y, ½-z
C17—H17…Br1	0.93	3.07	3.458(9)	107	2-x, 1-y, -z
C21—H21H29B—C29	0.93, 0.96	2.30	3.585(13)	157, 110	1-x, -y, 1-z
C21—H21H29A—C29	0.93, 0.96	2.51	3.585(13)	125, 96	1-x, -y, 1-z
C26—H26H34A—C34	0.93, 0.96	2.59	3.645(13)	129, 94	1-x, -y, 1-z
C26—H26H34B—C34	0.93, 0.96	2.51	3.645(13)	165, 99	1-x, -y, 1-z

	DEI	Experimental
Ni1-Ni2	3.110	3.072
Ni1-Ni3	3.039	3.053
Ni1-Ni4	3.041	3.033
Ni2-Ni3	3.042	3.059
Ni2-Ni4	3.039	3.041
Ni3-Ni4	3.108	3.100
Ni1-O9	2.061	2.049
Ni1-O10	2.048	2.030
Ni1-011	2.053	2.058
Ni2-O10	2.053	2.052
Ni2-011	2.049	2.031
Ni2-012	2.059	2.037
Ni3-09	2.047	2.029
Ni3-O11	2.059	2.058
Ni3-O12	2.054	2.073
Ni4-09	2.056	2.048
Ni4-O10	2.058	2.034
Ni4-O12	2.047	2.038
Ni1-O10-Ni2	98.6	97.65
Ni1-011-Ni2	98.6	97.41
Ni1-09-Ni3	95.4	96.95
Ni1-O11-Ni3	95.3	95.76
Ni1-09-Ni4	95.3	95.52
Ni1-O10-Ni4	95.6	96.53
Ni2-011-Ni3	95.5	96.87
Ni2-012-Ni3	95.4	96.16
Ni2-O10-Ni4	95.3	96.18
Ni2-012-Ni4	95.5	96.51
Ni3-O9-Ni4	98.5	98.97
Ni3-O12-Ni4	98.5	97.87
Ni1-Ni2-Ni3-Ni4	69.3	69.56
09-010-011-012	67.7	68.96

Table S4. Comparison of experimental and theoretical structures for compound 4.

Figure S2. Atom labeling for tables in Supporting Information

	Compound 1				
	Distance (Å)	J calc.(cm ⁻¹)			
Ni1-Ni2	3.115	J ₁ = 6.58			
Ni1-Ni3	3.041	J ₂ = 13.08			
Ni1-Ni4	3.041	J ₃ = 13.46			
Ni2-Ni3	3.041	J ₄ = 13.47			
Ni2-Ni4	3.041	J₅ = 13.15			
Ni3-Ni4	3.115	$J_6 = 6.73$			
	Compound 2	2			
	Distance (Å)	J calc.(cm ⁻¹)			
Ni1-Ni2	3.114	J ₁ = 6.87			
Ni1-Ni3	3.041	J ₂ = 12.92			
Ni1-Ni4	3.041	J ₃ = 13.28			
Ni2-Ni3	3.041	J ₄ = 13.18			
Ni2-Ni4	3.041	J ₅ = 12.95			
Ni3-Ni4	3.114	$J_6 = 6.88$			
	Compound :	3			
	Distance (Å)	J calc.(cm ⁻¹)			
Ni1-Ni2	3.116	J ₁ = 7.74			
Ni1-Ni3	3.040	J ₂ = 13.10			
Ni1-Ni4	3.040	J ₃ = -6439.48			
Ni2-Ni3	3.040	J ₄ = 13.46			
Ni2-Ni4	3.040	J ₅ = 13.20			
Ni3-Ni4	3,116	J ₆ = 7.54			

 Table S5.
 Calculated magnetic coupling constants J for compounds 1-3.

Compound 4				
	DFT Ca	alculated	Experime	ntal Values
	Distance (Å) J DFT.(cm ⁻¹)			J calc.(cm ⁻¹)
Ni1-Ni2	3.110	J ₁ = 7.45	3.072	J ₁ = 12.06
Ni1-Ni3	3.039	J ₂ = 12.88	3.053	J ₂ = 12.56
Ni1-Ni4	3.041	J ₃ = 12.95	3.033	J ₃ = 14.01
Ni2-Ni3	3.042	J ₄ = 12.86	3.059	J ₄ = 12.30
Ni2-Ni4	3.039	J ₅ = 12.99	3.041	J ₅ = 13.58
Ni3-Ni4	3.108	J ₆ = 7.74	3.100	J ₆ = 8.53

Table S6. Calculated magnetic coupling constants J for compound **4** considering both optimized and experimental structures.

Table S7. Mulliken spin densities computed for the high spin configuration of the $[Ni_2]$ dimer model of compound **1**. See Figure S1 for labeling of atoms.

Atom Label ^a	Spin Density	Atom Label ^a	Spin Density	
		<i>I</i> ₁		
Ni(1)	1.725	Ni(2)	1.725	
О _{СНЗО-} (1)	0.105	O _{CH3O-} (2)	0.105	
O _{CH3O-} (3)	0.052	O _{CH3O-} (4)	0.052	
О _{СНЗОН} (1)	0.032	О _{СНЗОН} (2)	0.032	
O _{aldehyde} (1)	0.034	O _{phenoxy} (1)	0.037	
O _{aldehyde} (2)	0.034	O _{phenoxy} (2)	0.037	
	U	I_2		
Ni(1)	1.724	Ni(3)	1.724	
O _{CH3O-} (1)	0.106	O _{CH3O-} (2)	0.052	
O _{CH3O-} (3)	0.103	O _{CH3O-} (4)	0.054	
О _{снзон} (1)	0.032	О _{снзон} (3)	0.032	
O _{aldehyde} (1)	0.034	O _{phenoxy} (1)	0.037	
O _{aldehyde} (3)	0.034	O _{phenoxy} (3)	0.037	
	U	I_3		
Ni(1)	1.724	Ni(4)	1.724	
O _{CH3O-} (1)	0.054	O _{CH3O-} (2)	0.103	
O _{CH3O-} (3)	0.106	O _{CH3O-} (4)	0.052	
O _{CH3OH} (1)	0.032	О _{СНЗОН} (4)	0.032	
O _{aldehyde} (1)	0.034	O _{phenoxy} (1)	0.037	
O _{aldehyde} (4)	0.034	$O_{\text{phenoxy}}(4)$	0.037	
	U	I_4		
Ni(2)	1.724	Ni(3)	1.724	
O _{CH3O-} (1)	0.103	O _{CH3O-} (2)	0.054	
O _{CH3O-} (3)	0.052	O _{CH3O-} (4)	0.106	
О _{снзон} (2)	0.032	О _{СНЗОН} (3)	0.032	
O _{aldehyde} (2)	0.034	O _{phenoxy} (2)	0.037	
O _{aldehyde} (3)	0.034	O _{phenoxy} (3)	0.037	
J_5				
Ni(2)	1.724	Ni(4)	1.724	
O _{CH3O-} (1)	0.052	O _{CH3O-} (2)	0.106	
O _{CH3O-} (3)	0.054	O _{CH3O-} (4)	0.103	

О _{снзон} (2)	0.032	O _{CH3OH} (4)	0.032
O _{aldehyde} (2)	0.034	O _{phenoxy} (2)	0.037
O _{aldehyde} (4)	0.034	O _{phenoxy} (4)	0.037
	· · · ·	J_6	
Ni(3)	1.725	Ni(4)	1.725
O _{CH3O-} (1)	0.052	O _{CH3O-} (2)	0.052
O _{CH3O-} (3)	0.105	O _{CH3O-} (4)	0.105
O _{CH3OH} (3)	0.032	O _{CH3OH} (4)	0.032
O _{aldehyde} (3)	0.034	O _{phenoxy} (3)	0.037
$O_{aldehyde}(4)$	0.034	O _{phenoxy} (4)	0.037

Table S8. Mulliken spin densities computed for the high spin configuration of the $[Ni_2]$ dimer models of compound **2**. See Figure S1 for labeling of atoms.

Atom Label ^a	Spin Density	Atom Label ^a	Spin Density		
J ₁					
Ni(1)	1.724	Ni(2)	1.724		
O _{CH3O-} (1)	0.106	O _{CH3O-} (2)	0.106		
O _{CH3O-} (3)	0.052	O _{CH3O-} (4)	0.052		
О _{снзон} (1)	0.032	О _{СНЗОН} (2)	0.032		
O _{aldehyde} (1)	0.034	O _{phenoxy} (1)	0.036		
O _{aldehyde} (2)	0.034	$O_{\text{phenoxy}}(2)$	0.036		
		J_2			
Ni(1)	1.724	Ni(3)	1.724		
O _{CH3O-} (1)	0.106	O _{CH3O-} (2)	0.052		
O _{CH3O-} (3)	0.104	O _{CH3O-} (4)	0.055		
O _{CH3OH} (1)	0.032	О _{снзон} (3)	0.032		
O _{aldehyde} (1)	0.034	O _{phenoxy} (1)	0.036		
O _{aldehvde} (3)	0.034	O _{phenoxy} (3)	0.036		
		J_3	•		
Ni(1)	1.724	Ni(4)	1.724		
O _{CH3O-} (1)	0.055	O _{CH3O-} (2)	0.104		
O _{CH3O-} (3)	0.106	O _{CH3O-} (4)	0.052		
O _{CH3OH} (1)	0.032	O _{CH3OH} (4)	0.032		
O _{aldehvde} (1)	0.034	O _{phenoxy} (1)	0.036		
O _{aldehyde} (4)	0.034	O _{phenoxy} (4)	0.036		
	L	J_4			
Ni(2)	1.724	Ni(3)	1.724		
O _{CH3O-} (1)	0.104	O _{CH3O-} (2)	0.055		
O _{CH3O-} (3)	0.052	O _{CH3O-} (4)	0.106		
O _{CH3OH} (2)	0.032	О _{снзон} (3)	0.032		
O _{aldehyde} (2)	0.034	O _{phenoxy} (2)	0.036		
O _{aldehyde} (3)	0.034	O _{phenoxy} (3)	0.036		
	L. L	J_5			
Ni(2)	1.724	Ni(4)	1.724		
O _{CH3O-} (1)	0.052	O _{CH3O-} (2)	0.106		
O _{CH3O-} (3)	0.055	O _{CH3O-} (4)	0.104		

О _{снзон} (2)	0.032	O _{CH3OH} (4)	0.032
O _{aldehyde} (2)	0.034	O _{phenoxy} (2)	0.036
O _{aldehyde} (4)	0.034	O _{phenoxy} (4)	0.036
	L. L	I_6	
Ni(3)	1.724	Ni(4)	1.724
O _{CH3O-} (1)	0.052	O _{CH3O-} (2)	0.052
O _{CH3O-} (3)	0.106	O _{CH3O-} (4)	0.106
О _{снзон} (3)	0.032	O _{CH3OH} (4)	0.032
O _{aldehyde} (3)	0.034	$O_{\text{phenoxy}}(3)$	0.036
O _{aldehyde} (4)	0.034	$O_{\text{phenoxy}}(4)$	0.036

Table S9. Mulliken spin densities computed for the high spin configuration of the $[Ni_2]$ dimer models of compound **3**. See Figure S1 for labeling of atoms.

Atom Label ^a	Spin Density	Atom Label ^a	Spin Density		
J_1					
Ni(1)	1.724	Ni(2)	1.724		
О _{СНЗО-} (1)	0.106	O _{CH3O-} (2)	0.106		
O _{CH3O-} (3)	0.052	O _{CH3O-} (4)	0.052		
O _{CH3OH} (1)	0.031	О _{СНЗОН} (2)	0.031		
O _{aldehyde} (1)	0.035	O _{phenoxy} (1)	0.035		
O _{aldehyde} (2)	0.035	$O_{\text{phenoxy}}(2)$	0.035		
		J_2			
Ni(1)	1.723	Ni(3)	1.723		
O _{CH3O-} (1)	0.106	O _{CH3O-} (2)	0.053		
O _{CH3O-} (3)	0.104	O _{CH3O-} (4)	0.055		
O _{CH3OH} (1)	0.032	О _{снзон} (3)	0.032		
O _{aldehvde} (1)	0.035	O _{phenoxy} (1)	0.036		
O _{aldehvde} (3)	0.035	O _{phenoxy} (3)	0.036		
		J_3			
Ni(1)	1.742	Ni(4)	-0.012		
O _{CH3O-} (1)	0.060	O _{CH3O-} (2)	0.037		
O _{CH3O-} (3)	0.010	O _{CH3O-} (4)	0.063		
O _{CH3OH} (1)	0.034	O _{CH3OH} (4)	-0.025		
O _{aldehvde} (1)	0.276	O _{phenoxy} (1)	0.315		
O _{aldehyde} (4)	-0.009	O _{phenoxy} (4)	0.043		
	L	J_4			
Ni(2)	1.723	Ni(3)	1.723		
O _{CH3O-} (1)	0.104	O _{CH3O-} (2)	0.055		
O _{CH3O-} (3)	0.052	O _{CH3O-} (4)	0.106		
О _{снзон} (2)	0.032	О _{снзон} (3)	0.032		
O _{aldehyde} (2)	0.035	O _{phenoxy} (2)	0.036		
O _{aldehyde} (3)	0.035	O _{phenoxy} (3)	0.036		
	L. L	J_5			
Ni(2)	1.723	Ni(4)	1.723		
O _{CH3O-} (1)	0.052	O _{CH3O-} (2)	0.106		
O _{CH3O-} (3)	0.055	O _{CH3O-} (4)	0.104		

О _{снзон} (2)	0.032	O _{CH3OH} (4)	0.032
O _{aldehyde} (2)	0.035	O _{phenoxy} (2)	0.036
O _{aldehyde} (4)	0.035	O _{phenoxy} (4)	0.036
	L. L	I_6	
Ni(3)	1.724	Ni(4)	1.724
O _{CH3O-} (1)	0.052	O _{CH3O-} (2)	0.052
O _{CH3O-} (3)	0.106	O _{CH3O-} (4)	0.106
O _{CH3OH} (3)	0.031	O _{CH3OH} (4)	0.031
O _{aldehyde} (3)	0.035	$O_{\text{phenoxy}}(3)$	0.035
O _{aldehyde} (4)	0.035	O _{phenoxy} (4)	0.035

Table S10. Mulliken spin densities computed for the high spin configuration of the optimized structure of [Ni₂] dimer models of compound **4**. See Figure S1 for labeling of atoms.

Atom Label ^a	Spin Density	Atom Label ^a	Spin Density		
J_1					
Ni(1)	1.724	Ni(2)	1.724		
O _{CH3O-} (1)	0.106	O _{CH3O-} (2)	0.106		
O _{CH3O-} (3)	0.052	O _{CH3O-} (4)	0.052		
O _{CH3OH} (1)	0.032	О _{СНЗОН} (2)	0.032		
O _{aldehyde} (1)	0.034	O _{phenoxy} (1)	0.036		
O _{aldehyde} (2)	0.034	$O_{\text{phenoxy}}(2)$	0.036		
	L. L	J_2			
Ni(1)	1.723	Ni(3)	1.723		
O _{CH3O-} (1)	0.106	O _{CH3O-} (2)	0.052		
O _{CH3O-} (3)	0.103	O _{CH3O-} (4)	0.055		
О _{снзон} (1)	0.032	О _{снзон} (3)	0.032		
O _{aldehyde} (1)	0.034	O _{phenoxy} (1)	0.036		
O _{aldehyde} (3)	0.035	O _{phenoxy} (3)	0.036		
,	L	J_3	·		
Ni(1)	1.723	Ni(4)	1.723		
O _{CH3O-} (1)	0.055	O _{CH3O-} (2)	0.104		
O _{CH3O-} (3)	0.106	O _{CH3O-} (4)	0.052		
O _{CH3OH} (1)	0.032	O _{CH3OH} (4)	0.032		
O _{aldehyde} (1)	0.034	O _{phenoxy} (1)	0.036		
O _{aldehyde} (4)	0.034	O _{phenoxy} (4)	0.037		
		J_4			
Ni(2)	1.724	Ni(3)	1.723		
O _{CH3O-} (1)	0.103	O _{CH3O-} (2)	0.055		
O _{CH3O-} (3)	0.052	O _{CH3O-} (4)	0.106		
О _{СНЗОН} (2)	0.032	О _{СНЗОН} (3)	0.032		
O _{aldehyde} (2)	0.034	O _{phenoxy} (2)	0.034		
O _{aldehyde} (3)	0.035	O _{phenoxy} (3)	0.036		
J_5					
Ni(2)	1.723	Ni(4)	1.724		
O _{CH3O-} (1)	0.052	O _{CH3O-} (2)	0.106		
O _{CH3O-} (3)	0.054	O _{CH3O-} (4)	0.103		

О _{СНЗОН} (2)	0.032	O _{CH3OH} (4)	0.032
O _{aldehyde} (2)	0.034	O _{phenoxy} (2)	0.036
O _{aldehyde} (4)	0.034	O _{phenoxy} (4)	0.037
	L. L	I_6	
Ni(3)	1.723	Ni(4)	1.724
O _{CH3O-} (1)	0.052	O _{CH3O-} (2)	0.052
O _{CH3O-} (3)	0.106	O _{CH3O-} (4)	0.106
О _{снзон} (3)	0.032	O _{CH3OH} (4)	0.032
O _{aldehyde} (3)	0.035	O _{phenoxy} (3)	0.036
O _{aldehyde} (4)	0.034	$O_{\text{phenoxy}}(4)$	0.036

Table S11. Mulliken spin densities computed for the high spin configuration of the experimental structure of $[Ni_2]$ dimer models of compound **4**. See Figure S1 for labeling of atoms.

Atom Label ^a	Spin Density	Atom Label ^a	Spin Density		
J_1					
Ni(1)	1.722	Ni(2)	1.720		
O _{CH3O-} (1)	0.114	O _{CH3O-} (2)	0.113		
O _{CH3O-} (3)	0.055	O _{CH3O-} (4)	0.056		
O _{CH3OH} (1)	0.021	О _{СНЗОН} (2)	0.019		
O _{aldehyde} (1)	0.038	O _{phenoxy} (1)	0.039		
O _{aldehyde} (2)	0.038	$O_{\text{phenoxy}}(2)$	0.037		
	L. L	J_2			
Ni(1)	1.723	Ni(3)	1.726		
O _{CH3O-} (1)	0.110	O _{CH3O-} (2)	0.054		
O _{CH3O-} (3)	0.110	O _{CH3O-} (4)	0.056		
O _{CH3OH} (1)	0.021	О _{снзон} (3)	0.022		
O _{aldehyde} (1)	0.037	O _{phenoxy} (1)	0.039		
O _{aldehyde} (3)	0.036	O _{phenoxy} (3)	0.040		
		J_3	·		
Ni(1)	1.722	Ni(4)	1.722		
O _{CH3O-} (1)	0.059	O _{CH3O-} (2)	0.109		
O _{CH3O-} (3)	0.113	O _{CH3O-} (4)	0.054		
O _{CH3OH} (1)	0.021	O _{CH3OH} (4)	0.023		
O _{aldehyde} (1)	0.038	O _{phenoxy} (1)	0.039		
O _{aldehyde} (4)	0.036	O _{phenoxy} (4)	0.040		
	L. L	J_4			
Ni(2)	1.721	Ni(3)	1.725		
O _{CH3O-} (1)	0.108	O _{CH3O-} (2)	0.060		
O _{CH3O-} (3)	0.056	O _{CH3O-} (4)	0.111		
О _{СНЗОН} (2)	0.019	О _{СНЗОН} (3)	0.022		
O _{aldehyde} (2)	0.038	O _{phenoxy} (2)	0.037		
O _{aldehyde} (3)	0.036	O _{phenoxy} (3)	0.040		
J_5					
Ni(2)	1.720	Ni(4)	1.722		
O _{CH3O-} (1)	0.056	O _{CH3O-} (2)	0.114		
O _{CH3O-} (3)	0.060	O _{CH3O-} (4)	0.109		

О _{снзон} (2)	0.019	O _{CH3OH} (4)	0.023
O _{aldehyde} (2)	0.037	O _{phenoxy} (2)	0.037
O _{aldehyde} (4)	0.037	O _{phenoxy} (4)	0.040
	· · · ·	I_6	
Ni(3)	1.726	Ni(4)	1.723
O _{CH3O-} (1)	0.053	O _{CH3O-} (2)	0.055
O _{CH3O-} (3)	0.115	O _{CH3O-} (4)	0.109
O _{CH3OH} (3)	0.022	O _{CH3OH} (4)	0.023
O _{aldehyde} (3)	0.037	$O_{\text{phenoxy}}(3)$	0.040
$O_{aldehyde}(4)$	0.037	$O_{\text{phenoxy}}(4)$	0.040

Table S12. Orbital contributions (%) to the spin densities

Orbital contributions to the spin densities, J_1					
	1	2	3	4opt.	4exp.
Ni(1)dz2	21.28	21.31	21.31	12.97	14.48
Ni(1)dx2-y2	3.42	3.73	4.07	18.25	19.01
Ni(1)dxy	18.10	17.80	17.46	0.27	0.22
Ni(2)dz2	21.28	21.31	21.31	14.98	14.29
Ni(2)dx2-y2	3.42	3.73	4.07	18.52	18.54
Ni(2)dxy	18.09	17.80	17.46	1.31	1.21
	Orbital con	tributions to	the spin den	sities, J_2	
	1	2	3	4opt.	4exp.
Ni(1)dz2	21.30	21.33	21.33	12.98	14.50
Ni(1)dx2-y2	3.42	3.72	4.06	18.27	19.04
Ni(1)dxy	18.07	17.78	17.44	0.27	0.22
Ni(3)dz2	21.30	21.33	21.33	15.30	15.77
Ni(3)dx2-y2	3.44	3.74	4.09	19.16	18.73
Ni(3)dxy	18.05	17.76	17.41	0.25	0.63
	Orbital con	tributions to	the spin den	sities, J_3	
	1	2	3	4opt.	4exp.
Ni(1)dz2	21.30	21.33	21.02	12.97	14.48
Ni(1)dx2-y2	3.44	3.74	4.90	18.24	19.00
Ni(1)dxy	18.05	17.76	17.32	0.27	0.22
Ni(4)dz2	21.30	21.33	-6.74	12.68	13.25
Ni(4)dx2-y2	3.42	3.72	1.25	17.35	18.09
Ni(4)dxy	18.07	17.78	5.36	1.24	0.44
Orbital contributions to the spin densities, J_4					
	1	2	3	4opt.	4exp.
Ni(2)dz2	21.30	21.33	21.33	14.95	14.25
Ni(2)dx2-y2	3.43	3.74	4.09	18.54	18.58
Ni(2)dxy	18.06	17.76	17.42	1.30	1.19

Ni(3)dz2	21.306	21.33	21.33	15.32	15.77	
Ni(3)dx2-y2	3.41	3.72	4.07	19.15	18.72	
Ni(3)dxy	18.08	17.78	17.43	0.25	0.64	
Orbital contributions to the spin densities, J_5						
	1	2	3	4opt.	4exp.	
Ni(2)dz2	21.30	21.33	21.33	14.93	15.82	
Ni(2)dx2-y2	3.42	3.72	4.06	18.53	18.74	
Ni(2)dxy	18.07	17.78	17.44	1.31	0.63	
Ni(4)dz2	21.30	21.33	21.33	12.67	13.22	
Ni(4)dx2-y2	3.44	3.74	4.09	17.37	18.10	
Ni(4)dxy	18.05	17.75	17.41	1.26	0.46	
	Orbital con	tributions to	the spin den	sities, J ₆		
	1	2	3	4opt.	4exp.	
Ni(3)dz2	21.28	21.31	21.31	15.34	15.82	
Ni(3)dx2-y2	3.42	3.73	4.08	19.16	18.74	
Ni(3)dxy	18.10	17.80	17.46	0.24	0.63	
Ni(4)dz2	21.28	21.31	21.31	12.66	13.22	
Ni(4)dx2-y2	3.42	3.73	4.07	17.35	18.10	
Ni(4)dxy	18.10	17.80	17.46	1.26	0.46	

Figure S3. M(H) loops for a micron-sized single crystal of complexes (a) 1; (b) 2; (c) 3 and (d) 4, measured by μ -SQUID at a field sweep rate = 8 mT/s and different bath temperatures.

Figure S4. Graphical representation of the spin density (contour 0.004 e Å-3) at the groundstate (high-spin) configuration (left) and theoretical model used (right) of compound **1**, J_2 .

Figure S5. Graphical representation of the spin density (contour 0.004 e Å-3) at the groundstate (high-spin) configuration (left) and theoretical model used (right) of compound **1**, J_3 .

Figure S6. Graphical representation of the spin density (contour 0.004 e Å-3) at the groundstate (high-spin) configuration (left) and theoretical model used (right) of compound **1**, J_4 .

Figure S7. Graphical representation of the spin density (contour 0.004 e Å-3) at the groundstate (high-spin) configuration (left) and theoretical model used (right) of compound **1**, J_5 .

Figure S8. Graphical representation of the spin density (contour 0.004 e Å-3) at the groundstate (high-spin) configuration (left) and theoretical model used (right) of compound **1**, J_6 .