Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supplemental Information

Non-precious cobalt-bismuth binary oxide as a superior catalyst for the highly selective aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid in aqueous solvent

Qian Zhang ^a, Aicheng Chen * ^a, Weixing Pan ^a, and Hu Zhu * ^a

^a Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P.R.China

Corresponding authors: Aicheng Chen, chenaicheng@fjnu.edu.cn; Hu Zhu, zhuhu@fjnu.edu.cn

Catalust	Oxidant	Additive		Temp. T	Time	Conv.	FDCA Yield	Def
Catalyst		Dosage	Concentration	(°C)	(h)	(%)	(%)	Ref.
CoBi-12	0.6 MPa O ₂	2 equiv. NaOH	0.013 M	110	3	100	98.23	This work
$Ce_{0.5}Bi_{0.5}O_{2-\delta}$	1 MPa O_2	4 equiv. NaOH	0.60 M	65	1	100	8	S1
amor-MnO ₂	1 MPa	3 equiv. NaHCO $_3$	0.12 M	130	3	100	98	S2
CoCe-15	0.6 MPa O_2	4 equiv. NaOH	0.027 M	130	4	100	77.4	S3
Co-Mn-0.25	1 MPa O_2	2 equiv. NaHCO ₃	0.10 M	120	5	99	95.2	S4
MnO _x -CeO ₂	2.0 MPa O_2	2 equiv. KHCO₃	0.20 M	110	12	98.5	88.7	S5
CuMn ₂ O ₄	$1 MPa O_2$	2 equiv. NaHCO $_3$	0.10 M	120	18	100	90.1	S6
MOF-Mn ₂ O ₃	1.4 MPa O_2	3 equiv. NaHCO ₃	0.15 M	100	24	100	99.5	S7
β -MnO ₂ -HS	1 MPa O_2	3 equiv.NaHCO ₃	0.12 M	100	24	99	86	S8
MnO ₂	1 MPa O_2	3 equiv. NaHCO₃	0.12 M	100	24	>99	91	S 8
$Mn_{0.75}Fe_{0.25}$	0.8 MPa O ₂	4 equiv. NaOH	0.40 M	90	24	93	29.8	S9
Activated MnO ₂	1 MPa O_2	3 equiv. NaHCO ₃	0.12 M	100	24	99	74	S8
MnO ₂	1 MPa O_2	3 equiv. NaHCO ₃	0.12 M	100	24	99	91	S10
MnCo ₂ O ₄	1 MPa O_2	3 equiv. KHCO ₃	0.14 M	100	24	99.5	70.9	S11
SrMnO₃	1 MPa O_2	3 equiv. NaHCO ₃	0.12 M	100	24	99	58	S10
amor-MnO ₂	1 MPa	3 equiv. NaHCO ₃	0.12 M	100	24	100	92	S2
Ni-MnO _x	0.8 MPa O ₂	4 equiv. NaHCO ₃	0.40 M	100	28	100	93.8	S12
CoOx-MC	0.5 MPa O_2	3.6 equiv. K ₂ CO ₃	0.048 M	80	30	98.3	95.3	S13

Table S1 Comparison on catalytic performances of cheap metal oxide catalysts for the aerobic oxidation of HMF to

FDCA in water

CoBi-12	BET surface area (m ² g ⁻¹)	Pore volume (cm³ g-¹)	Average pore size (nm)
Fresh	44.98	0.195	14.74
Recycled	40.29	0.193	16.14

$\textbf{Table S2} \ \textbf{Pore properties for the fresh and recycled CoBi-12}$

References :

- S1. Z. Miao, Y. Zhang, X. Pan, T. Wu, B. Zhang, J. Li, T. Yi, Z. Zhang and X. Yang, Catal. Sci. Technol., 2015, 5, 1314-1322.
- S2. Y. Wen, Y. Zhang, L. He, H. Li, Z. Zhuang and Y. Yu, ACS Appl. Nano Mater., 2022, 5, 11559-11566.
- S3. A. C. Chen, T. T. Li, Q. Zhang and H. Zhu, Catal. Sci. Technol., 2022, 12, 2954-2961.
- S4. K. T. V. Rao, J. L. Rogers, S. Souzanchi, L. Dessbesell, M. B. Ray and C. Xu, ChemSusChem, 2018, 11, 3323-3334.
- S5. X. Han, C. Li, X. Liu, Q. Xia and Y. Wang, Green Chem., 2017, 19, 996-1004.
- S6. X. Wan, N. Tang, Q. Xie, S. Zhao, C. Zhou, Y. Dai and Y. Yang, Catal. Sci. Technol., 2021, 11, 1497-1509.
- S7. L. Bao, F.Z. Sun, G.Y. Zhang and T.L. Hu, ChemSusChem, 2020, 13, 548-555.
- S8. E. Hayashi, Y. Yamaguchi, K. Kamata, N. Tsunoda, Y. Kumagai, F. Oba and M. Hara, J. Am. Chem. Soc., 2019, 141, 890-900.
- S9. F. Neaţu, R. S. Marin, M. Florea, N. Petrea, O. D. Pavel and V. I. Pârvulescu, *Appl. Catal. B: Environ.*, 2016, 180, 751-757.
- S10. E. Hayashi, T. Komanoya, K. Kamata and M. Hara, ChemSusChem, 2017, 10, 654-658.
- S11. S. Zhang, X. Sun, Z. Zheng and L. Zhang, Catal. Commun., 2018, 113, 19-22.
- S12. K. Yu, Y. Liu, D. Lei, Y. Jiang, Y. Wang, Y. Feng, L.L. Lou, S. Liu and W. Zhou, *Catal. Sci. Technol.*, 2018, 8, 2299-2303.
- S13. X. Liu, M. Zhang and Z. Li, ACS Sustainable Chem. Eng., 2020, 8, 4801-4808.