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The geometries of all initial DES materials were fully optimized using Grimme's DFT-D3 empirical 

dispersion correction with Tmolex (version 21.0.0) at the B3LYP/aug-cc-pVTZ level. Moreover, vibrational 

frequency calculations were carried out to confirm the optimized geometries as true minima. The properties of 

the considered solvent systems were investigated by analyzing minimal HBA:HBD clusters at a 1:1 ratio. The 

DES simulation systems with fluorotelomer alcohol (6:2 FTOH as representatives) contained 65 molecules 

(HBA:HBD:target = 6:6:1). The initial conformations were initially generated via Packmol, where the solvent 

molecules were randomly and loosely packed into a cube (4 × 4 × 4 nm). Periodic boundary conditions were 

implemented for cubic boxes in all directions, with the addition of box sides of 1.2 Å and a tolerance of 2.0 Å. 

In all instances, long-range Coulomb interactions were computed using the particle-mesh Ewald (PME) 

method, with a grid spacing of 0.16 nm and interpolation order of 4. These systems were then equilibrated 

classically in Gromacs 2022 package for 20 ns under canonical (NVT) and isothermal-isobaric (NPT) 

ensemble dynamics at 298.15 K and 1 atm. The molecules were treated using the general Amber force field 

(GAFF). The final frame obtained from the classical NPT run was utilized as the input for the ab initio 

molecular dynamics (AIMD) simulations. The AIMD simulations were carried out in CP2K package, using 

the TZVP basis set to describe the valence electrons and GTH core potential for different atom types. 

Furthermore, the simulations employed the B3LYP exchange-correlation functional with Grimme’s DFT-D3 

empirical dispersion correction, and a timestep of 1.0 fs. The system underwent an initial equilibration with 

AIMD under NPT procedures for 10 ps, followed by a production level run of 40 ps. The following analyses 

conducted with the program TRAVIS. Local structure and microscopic interactions were analyzed by 

Multiwfn.
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Figure S1. Solubility of 1H,1H,2H,2H-perfluoro-1-octanol (6:2 FTOH) in the 

trifluoromethoxybenzene-based deep eutectic solvents (HBD: HBA = 1:1, molar ratio) at 298.15 K 

and 1 atm.

Trifluoromethoxybenzene Levulinic acid

1H,1H,2H,2H-perfluoro-1-octanol

Figure S2. Atom numbering of different compounds.
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Figure S3. Velocity distribution function for the mass center of 6:2 FTOH in the eutectic solvents.
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Figure S4. 19F NMR chemical shifts of the starting materials and the obtained eutectic solvent 

systems with and without 6:2 FTOH.

Table S1. Th activity coefficient of target in different eutectic systems.

DES Activity coefficient

Lev-Tfb 3.732394557

2-Hyd-Tfb 3.333357319


