Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Enhanced Reliability of Aluminium-Sulfur Batteries with Cost-effective Ionic Liquid

Electrolyte and Sulfur/Graphite Cathode

Mohan Gorle^{a, b} and Vatsala Rani Jetti^{*ab} ^aPolymers and Functional Materials, CSIR-Indian Institute of Chemical Technology,

Hyderabad-500007, India.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.

*Dr. Jetti Vatsala Rani, † E-mail: vatsala@iict.res.in

Table S1: Comparison of recent Al-S battery performance in terms of cathode material and

electrolyte

Reference	Cathode composition	Electrolyte	Sulfur Content (% wt)	Sulfur Loading (mg cm- 2)	Cycle	Specific Current (mAg- 1)	Initial to final Discharge capacity (mAhg-1)	Discharg e Voltage (V)
2015 ^[1]	Mixture of S.and ketien black,PVDF(50:30:20) on stainless steel (non- rechargeable)	EMIMCI-AICI3 (1:1.5)	50	1.1	1	30	1400	1.2
2018 ^[2]	Spreading the mixture of S and ionic liquid electrolyte onto activated CNF paper (S:CNF=1:2)	EMIMCI-AICI3 (1:1.3)	33	1.0	50	30 (C/50)	1000–600	1.05
2020 ^[3]	S on activated carbon cloth and Co catalyst	EMIMCI-AICI3 (1:1.3)	n/a	0.8-1.0	100	1000	1320–500	0.65
2017 ^[4]	Spreading the mixture of S and ionic liquid electrolyte onto activated CNF paper (S:CNF=1:2)	0.5M LiCF ₃ SO ₃ in EMIMCI-AICI3 (1:1.25)	33	1.0	1	30 (C/50)	1250	0.76
H.Yang et. Al,2018 ^[5]	S, CMK-3,Ketjer black,PTFE (40:4010:10)	NBMP/ EMIMBr- AICI3 (1:1.3)	40	n/a	20	251	1500–400	0.5
Y.Bian et. al, 2018 ^[6]	S, MWCNT,Polyacrylic latex (10:80:10) on Ni foil	Urea-AICI3 (1:1.4)	10	0.42	100	1000	740–500	1.7

W. Wang et. al, 2018 ^[7]	Sulfurized Polyacrylonitrile (SPAN) and PTFE (80:10:10) on carbon paper.	EMIMCI-AICI3 (1:1.5)	10	0.12	22	25	320–200	0.3
W. Chu et. al, 2019 ^[8]	S,CMK-3 1:1, with 10 % PTFE and 10 % Super C on Mo foil	Acetamide- AICI3 (1:13)	40	0.25	60	100	1500–500	0.55
K. Zhang et. al, 2019 ^[9]	BN/S/C (6:1:2) with 10 % PVDF coated on Pt coated OHP organic	EMIMCI-AICI3 (1:1.3)	10	0.3	100	100	532–100	1.15
Johan Lampkin et. al, 2020 ^[10]	S,CNT with PEO and PVP coated on Mo foil (58.8:29.4:9:3.9	EMIMCI-AICI3 (1:1.5)	58.8	0.4-3.5		50	1404	0.31
Johan Lampkin et. al, 2020 ^[10]	S,CNT with PEO and PVP coated on Mo foil (58.8:29.4:9:3.9	Acetamide- AICI3 (1:13)	58.8	0.4-3.5		50	2129	0.42
Johan Lampkin et. al, 2020 ^[10]	S,CNT with PEO and PVP coated on Mo foil (58.8:29.4:9:3.9	Urea-AICI3 (1:1.4)	58.8	0.4-3.5		50	2359	0.41
This work	Sulfur-graphite active material and Super-p and PVDF (80:10:10) coated on SS Mesh	EMIMCI- AICI3 (1:1.3)	70	0.8-1.0	2 50	200 300	1147–1281 947–600	1.8

Characterization of cathode material pre and post electrochemical analysis:

TGA:

Fig. S1: TGA of sulfur, commercially procured graphite and composite S@Gf

Fig. S2: Composite S@Gf SEM and EDAX and EDAX Mapping.

Fig. S3: (**a-b**) FE-SEM imgaes of charge state aluminium anode at 2.0 V, (**c-d**) EDAX and EDAX mapping

Fig. S4: (a-b) FE-SEM low magnification and high magnification and (**c-d**) EDAX and EDAX mapping at discharge state anode (Al) 0.1 V state

Fig. S5: (a-b)) EDAX and (**c-d**) mapping of Charge state cathode at 2.0 V FE-SEM low magnification and high magnification of S@Gf cathode material.

Fig. S6 Charge discharge performance at current rate **a**) 200, **b**) 300, **c**) 400, **d**) 500, **e**) 600, **f**) 700, **g**) 800 mA/g and **h**) Discharge capacity vs. Cycle number.

Reffrences:

- 1 G. Cohn, L. Ma, L. A. Archer, J. Power Sources 2015, **283**, 416.
- 2 X. Yu, M. J. Boyer, G. S. Hwang, A. Manthiram, Chem 2018, 4, 586.
- 3 Y. Guo, Z. Hu, J. Wang, Z. Peng, J. Zhu, H. Ji, L. J. Wan, Angew. Chem. Int. Ed. Engl. 2020, **59**, 22963.
- 4 X. Yu, A. Manthiram, Advanced Energy Materials 2017, 7.
- 5 H. Yang, L. Yin, J. Liang, Z. Sun, Y. Wang, H. Li, K. He, L. Ma, Z. Peng, S. Qiu, C. Sun, H.-M. Cheng, F. Li, 2018, **57**, 1898.
- 6 Y. Bian, Y. Li, Z. Yu, H. Chen, K. Du, C. Qiu, G. Zhang, Z. Lv, M.-C. Lin, ChemElectroChem, 2018, **5**, 3607.
- 7 W. Wang, Z. Cao, G. A. Elia, Y. Wu, W. Wahyudi, E. Abou-Hamad, A.-H. Emwas, L. Cavallo, L.-J. Li, J. Ming, ACS Energy Letters, 2018, **3**, 2899.
- 8 W. Chu, X. Zhang, J. Wang, S. Zhao, S. Liu, H. Yu, Energy Storage Materials 2019, 22, 418.
- 9 K. Zhang, T. H. Lee, J. H. Cha, R. S. Varma, J. W. Choi, H. W. Jang, M. Shokouhimehr, Sci Rep 2019, **9**, 13573.
- J. Lampkin, H. Li, L. Furness, R. Raccichini, N. Garcia-Araez, ChemSusChem 2020, 13, 3514.