Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

A novel "on-off" peptide fluorescent probe for the detection of copper and

sulfur ions in living cells

Xue-jiao Wang, a Jiang Zhou, a Liang-chao Yuan, b Jing-cheng Hou, Jiang Wu, *a Peng-cheng Lin*a

- a. Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007, Qinghai, P. R. China
- b. State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Artificial Intelligence Biomedicine, Engineering Research Center of Protein and Peptide Medicine, Nanjing University, Nanjing, 210023 P. R. China
- c. George School 1690 Newtown Langhorne Road, Newtown, PA 18940, USA

Probe	Detection condition	Detection	Detection	cell	Refs.
		limit	method	imaging	
2',7'-dichlorofluorescein	DMSO/HEPES =	5 nM	Turn on	Yes	1
	1/99 (v/v), and PH				
	7.4				
Nitrogen and Fluorine	deionized water	347 nM	Turn off	No	2
Co-Doped Carbon Dots					
Nitrogen and sulfur	aqueous solutions	23.4 nM	Turn off	No	3
doped carbon dots					
The hybrid of	DMSO, PBS buffer	_	Turn off	Yes	4
phenanthraquinone and	(PH 7.4)				
imidazole dye					
Chromone-3-aldehyde	THF	4 93 ×	Turn off	No	5
		ч.у <i>у</i> / (
		10 ⁻⁶ M			
Naphthaldehyde	EtOH: H_2O (8:2 v/v)	9.342	UV–Vis	No	6
		$ imes 10^{-7}$ M			
Diarylethene	Acetonitrile	1.76	Turn on	No	7
		×10 ⁻⁹ M			
FITC-Ahx-Ser-Ser-His-	PBS solution (10.0	38.2 nM	Turn off	Yes	This
Thr-Glu-Phe-NH ₂	mM, PH 7.4)				work

Tab. S1. Comparison of probes for Cu²⁺ assays reported in recent literature.

Probe	Detection condition	Detection	Detection	cell	Refs
11000	Detterion condition	limit	method	imaging	IXU15.
Naphthylamine derivatives	30% DMF and 0.1 M PBS buffer	3.1×10 ⁻⁷	Turn on	Yes	8
		М			
Salamo-based	EtOH/H ₂ O (10 : 1)	3.27 × 10-	Trun on	NO	9
Phenyl 2-(benzoylthio)	50 mM PBS buffer	⁸ M 100 nm	Turn on	Yes	10
benzoate-based	(pH 7.4) with 100 μ M cetrimonium bromide				
(Dansyl-Glu-Glu)2-Lys- NH ₂	10 mM HEPES buff- er solution at PH 7.4	87 nM	Turn on	Yes	11
ZnO nanoparticles	Methanol/water (1: 99, v/v)	6.4 nM	Turn on	No	12
Phen-anthro[9,10-d]imi-	DMF/H ₂ O solution	12.3 nM	Turn on	Yes	13
Cu (II)-dependent	Tris-HCl buffer	0.2 μM	Turn on	No	14
DNAzyme		27.0)(T	X 7	T1 :
Thr-Glu-Phe-NH ₂	PBS solution (10.0 mM, pH 7.4)	3/.9 nM	I urn on	Yes	This work

Tab. S2. Comparison of probes for S²⁻ assays reported in recent literature.

Tab. S3. Materials

	Reagent name	Abbreviated name
1	rink amide resin	AM
2	Fmoc-Phe -OH	/
3	Fmoc- Thr (Trt)-OH	/
4	Fmoc- His (Trt) - OH	/
5	Fmoc-Ser(tBu)-OH	/
6	6-Fmoc-Ahx	/
7	Fluorescein isothiocyanate isomer	FITC
8	1-hydroxybenzotriazole	HOBT
9	diisopropylethylamine	DIEA
10	trifluoroacetic acid	TFA
11	triisopropylsilane	TIS
12	Piperidine	/
13	dichloromethane	DCM

14	N, N-dimethylformamide	DMF	
15	anisole	/	
16	ethyl ether	Et ₂ O	
Tab. S4. In	nstruments		
	Experimental project	Instrument	
1	Absorption spectra	UV-2550 UV-Visible Spectrophotometer	
2	Fluorescence spectra	F7000 fluorescence spectrometer	
3	Electrospray ionization MS	Waters micromass ZQ2000	
4	High performance liquid chromatography separation	Waters ailiance 2695 liquid chromatograph	
5	Cytotoxicity	Infinite M200 PRO	
6	cell images	Zeiss LSM 880 confocal microscope	

Fig. S1. ESI-MS spectrum of FGP1

HPLC chromatogram of FGP1

Sample ID: FGP1 Sequence: FITC-Ahx-SSHTEF-NH2 Column: 4.6*150 mm, kromasil C18-5 Solvent A: 0.1% Trifluoroacetic in 100% Acetonirile Solvent B: 0.1% Trifluoroacetic in 100% Water Gradient: A B 0.01 min 5% 95% 25.0 min 95% 5%

30.0 mir	n 90%	10%
50.0 IIII	1 9070	1070

Flow rate: 1.0 mL/min Wavelength: 214 nm Volume: 20 μ L

Fig.S2 HPLC Chromatogram of FGP1

Tab. S5. HPLC chromatogram data of FGP1

Rank	RT	Area	Height	Area%
1	10.314	36807	10506	0.73
2	10.617	31020	49604	0.61
3	10.683	4895227	1104382	96.78
4	11.220	95253	15536	1.88

MS Analysis Report Sample ID: FGP1 Expected MS:1208.1 Flow rate: 0.2 mL/min Run Time: 1 min Buffer A: 0.1% HCOOH in water Buffer B: 0.1% HCOOH in Acetonirile

Fig. S3. ¹H NMR spectrum of FGP1 in DMSO-*d*₆.

Fig. S4 ¹³C NMR spectrum of FGP1 in DMSO- d_6 .

Fig. S5. UV absorption spectrum of FGP1

Fig. S6. Fluorescence intensity of **FGP1** (10.0 μ M) with gradient concentration of Cu²⁺ (0-15.0 μ M) were added in PBS buffer solutions (10.0 mM, pH 7.4). The lowest detection limit of Cu²⁺ was 38.2 nM.

Fig. S7. Job's plot for determining the stoichiometry of FGP1 and Cu²⁺ ions.

Fig. S8. TOF-MS of FGP1 (100.0 μ M) with Cu²⁺ ions (100.0 μ M) in PBS buffer solutions (10.0 mM, pH 7.4).

Fig. S9. Fluorescence intensity of **FGP1-Cu** (10.0 μ M) with gradient concentration of S²⁻ (0-40.0 μ M) were added in PBS buffer solutions (10.0 mM, pH 7.4). The lowest detection limit of S²⁻ was 37.9 nM.

Fig. S10. The FTIR spectra of FGP1.

References

- 1. M. J. Wei, Y. Y. Zhang, H. T. Li and S. Z. Yao, Anal. Methods, 2017, 9, 3956-3961.
- H. Wang, J. J. Cui, X. H. Fang, W. B. Zhang, J. J. Wang, S. Y. Chen and J. H. Qian, *Dyes Pigment.*, 2022, 197, 10.
- Y. T. Zeng, Z. B. Xu, J. Q. Guo, X. T. Yu, P. F. Zhao, J. Song, J. L. Qu, Y. Chen and H. Li, Molecules, 2022, 27, 13.
- 4. Y. M. Wang, M. Feng, B. He, X. Y. Chen, J. L. Zeng and J. Sun, Appl. Surf. Sci., 2022, 599, 10.
- 5. P. Bhalla, N. Tomer, A. Goel, Monika, A. Ansari and R. Malhotra, *Journal of Molecular Structure*, 2022, 1264.
- 6. P. Yadav, S. Gond, A. Singh and V. P. Singh, *Mater. Lett.*, 2021, 295, 4.
- 7. X. T. Liu, H. L. Liu, X. G. Tang, G. Liu and S. Z. Pu, *Tetrahedron*, 2021, 78, 8.
- M. G. Ren, Q. Y. Xu, Y. Y. Bai, S. J. Wang and F. G. Kong, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2021, 249, 10.
- 9. Z. L. Wei, L. Wang, S. Z. Guo, Y. Zhang and W. K. Dong, *RSC Adv.*, 2019, 9, 41298-41304.
- W. Chen, A. Pacheco, Y. Takano, J. J. Day, K. Hanaoka and M. Xian, *Angewandte Chemie-International Edition*, 2016, 55, 9993-9996.
- 11. Y. X. Li, Z. J. Ren, Y. S. Ge, C. X. Di, J. Zhou, J. Wu and L. Jia, *Microchem J.*, 2023, 184, 7.
- 12. K. Kaur, S. Chaudhary, S. Singh and S. K. Mehta, New Journal of Chemistry, 2015.
- 13. Y. Q. He, B. Zhao, W. Kan, L. M. Ding, Z. C. Yu, M. Y. Wang, B. Song and L. Y. Wang, *Analyst*, 2020, **145**, 213-222.
- 14. G. Y. Yue, D. Huang, F. Luo, L. H. Guo and B. Qiu, Journal of Luminescence, 2019.