Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

Supporting Information

Electrochemical Detection and Catalytic Reduction of Nitrobenzene using Bimetallic NiS₂/Fe₃S₄ Magnetic Heterostructure: An Innovative Approach for Environmental Remediation

Irfan Nazir^a, Zia Ul Haq^a, Arshid Bashir^a, Aaliya Qureashi^a, Firdous Ahmad Ganaie^a, Kaniz Fatima, Sheikh Irfan^b, Ghulam Nabi Dar^b, Altaf Hussain Pandith^{a*}

^a Laboratory of Nanoscience and Quantum Computations, Department of Chemistry, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India

^b Nanophysics Research Laboratory, Department of Physics, University of Kashmir, Srinagar, J&K, India

Experimental Procedures

Instrumentation

Different characterization techniques were used to analyze the material. Rigaku's Smart Lab X-ray diffractometer was used to carry out X-ray diffraction measurements. The surface morphology was studied using ZEISS Gemini SEM 500 FE-SEM, while the morphology was further studied by tunnelling electron microscopy Hitachi (H-7500). The elemental state and oxidation state was determined by X-ray photoelectron spectroscopy using Physical Electronics' (PHI 5000 Versa Probe III),. Electrochemical behaviour was analyzed using a Biological SAS potentiostat SP-150 a three-electrode electrochemical set-up with Ag/AgCl as a reference electrode, platinum wire as the auxiliary electrode, and glassy carbon as the working electrode. BET surface area was measured using nitrogen adsorption/desorption on an ASAP 2460 analyzer (Micromeritics, USA). UV-Vis analysis was performed using the Shimadzu UV-Vis spectrophotometer.

Fig. S1 CV of $NiS_2/Fe_3S_4/GCE$ with and without nitrobenzene

Table S1 Sensing of NB in the natural samples by using the sensor NiS₂/ Fe₃S₄/GCE

Sample	Nitrobenzene (Real) µA	Before Spiking (Unspiked) μΑ	After Spiking (Spiked) μΑ	Recovery factor (%)
Water	-49.4	-169.8	-221.7	104
Honey	-49.4	-161.1	-209.1	97

We used the addition methodology to estimate the recovery factor using actual samples to validate the sensing platform. This spike/recovery method detects the trivial amounts of nitrobenzene in natural waters and honey. The recovery factor was estimated by Equation 1.

$$\frac{Unspiked - Spiked}{Real} \times 100$$
 (1)

Fig.S2 elemental mapping and energy dispersive spectra of $\ensuremath{\mathsf{NiS}_2}$

Fig.S3 elemental mapping and energy dispersive spectra of $\ensuremath{\mathsf{FeS}_2}$

Fig.S4 (a) N2 adsorption–desorption curve for NiS_2/Fe_3S_4 . (b) Pore Distribution curve of NiS_2/Fe_3S_4 .