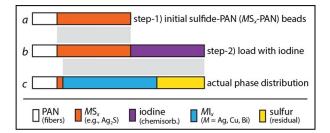
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2024

SUPPORTING INFORMATION

Synthesis of and iodine capture with MS_x (Ag_2S , Bi_2S_3 , Cu_2S)-polyacrylonitrile composites

Brian J Riley^{a1}, Saehwa Chong^a, and Nathan L. Canfield


^a Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354.

Keywords: iodine sorbent; radioiodine, silver sulfide; bismuth sulfide; copper sulfide; polyacrylonitrile

¹ Corresponding author: <u>brian.riley@pnnl.gov</u>; +1 (509) 372-4651

1 Conceptual Design of Sorbent System

The conceptual design for the current study is shown in Figure S1. The loading temperature of 130° C was selected for a few reasons. In previous studies,^{S1,2} temperatures in this range worked well for loading PAN composites. Higher temperatures (e.g., 150° C) showed evidence of iodine interactions with the PAN matrix itself,^{S3} while studies at room temperature showed very little PAN-iodine interactions.^{S4} Thus, it seems that 130° C is in a range of relevant temperature for iodine off-gas capture from radiological process implementation and in the sweet-spot for loading onto an active getter with minimal loading into the PAN. Also, the loading times selected for this study were based off our previous work.^{S1} While the reactions shown in Figure 1 (in the paper) predict the formation of elemental sulfur with a melting temperature of 112.8°C, it is more than likely that conversion of the metal sulfides (i.e., Ag₂S, Bi₂S₃, and Cu₂S) into metal iodides (i.e., AgI, BiI₃, CuI) will result in the formation of elemental sulfur that will melt within the sorbent. While it is possible that these will agglomerate and could clog the internal pores of the PAN scaffold, this was not generally observed in SEM-EDS analyses of iodine-loaded *M*S_x-PAN composites in this study except for the 80Cu₂S-PAN+I sample (see Figure 4 in the paper).

Figure S1. Graphic representation of multi-phase sorbent after iodine reaction showing (a) the initial MS_x -PAN composite, (b) the MS_x -PAN composite after iodine loading, and (c) the actual phase distribution of (b) according to the thermodynamic predictions; note that these values are arbitrarily shown as an example.

The first step in this study was to make PAN composites with Ag_2S , which is why different loadings were used (i.e., 75%, 80%, and 90%). The overall appearance of the $90Ag_2S$ -PAN composites showed that the spherical-type shapes were not maintained as well at loadings higher than 80 mass% so the 80 mass% loading level was used for the subsequent samples produced, i.e., $80Bi_2S_3$ -PAN and $80Cu_2S$ -PAN.

2 Making Composites

Sample	$m_{MS_{x}(g)}$	$m_{PAN}\left(\mathrm{g} ight)$	$V_{\rm DMSO}({\rm mL})$
75Ag ₂ S-PAN	0.6015	0.2014	3.0
80Ag ₂ S-PAN	0.8003	0.2004	3.0
90Ag ₂ S-PAN	1.2004	0.1336	2.0
80Bi ₂ S ₃ -PAN	0.8004	0.2002	3.0
80Cu ₂ S-PAN	0.8009	0.2004	3.0

Table S1. Compositions for each batch of MS_x -PAN composite beads including the sample ID, mass of MS_x (${}^{m_{MS_x}}$), mass of PAN (${}^{m_{PAN}}$), and the volume of DMSO (V_{DMSO}).

3 X-Ray Diffraction Data

Table S2. Summary of XRD data for as-received MS_x reagents including the Inorganic CrystalStructure Database (ICSD) number, space group (SG), SG#, mass% of the phase based on Rietveldrefinements, and the goodness of fit (Rwp) value.

Sample ID	Phase	ICSD#	Space Group	SG#	Mass%	Rwp
Ag ₂ S powder	Ag ₂ S	182916	$P2_{1}/c$	14	100.0	4.320
Bi ₂ S ₃ powder	Bi ₂ S ₃	153946	Pnma	62	100.0	14.772
Cu ₂ S powder	Cu ₂ S	_	Abm2	39	100.0	_

Table S3. Summary of XRD data for as-made MS_x -PAN composites including the ICSD number, space group (SG), SG#, mass% of the phase based on Rietveld refinements, and the Rwp value.

Sample ID	Phase	ICSD#	Space Group	SG#	Mass%	Rwp
75%Ag ₂ S-PAN	Ag ₂ S	182916	$P2_{1}/c$	14	100.0	4.504
80%Ag ₂ S-PAN	Ag ₂ S	182916	$P2_{1}/c$	14	100.0	4.435
90%Ag ₂ S-PAN	Ag ₂ S	182916	$P2_{1}/c$	14	100.0	4.725
80%Bi ₂ S ₃ -PAN	Bi ₂ S ₃	153946	Pnma	62	100.0	8.144
80%Cu ₂ S-PAN	Cu ₂ S	100333	Abm2	39	100.0	_

Table S4. Summary of XRD data for iodine-loaded *MS_x*-PAN composites including the ICSD number, space group (SG), SG#, mass% of the phase based on Rietveld refinements, and the Rwp value.

Sample ID	Phase	ICSD#	Space Group	SG#	Mass%	Rwp	
75%Ag ₂ S-PAN +I	γ-AgI	52361	<i>F</i> -43 <i>m</i>	216	70.8	5.568	
	β-AgI	15589	P6 ₃ mc	186	29.2		
80%Ag ₂ S-PAN+I	γ-AgI	52361	<i>F</i> -43 <i>m</i>	216	86.2	4.490	
	β-AgI	15589	P6 ₃ mc	186	13.8		
90%Ag ₂ S-PAN+I	γ-AgI	52361	F-43m	216	81.9	5.005	
	β-AgI	15589	P6 ₃ mc	186	18.1	5.095	
80%Bi ₂ S ₃ -PAN+I	BiI ₃	36182	R-3	148	100.0	6.475	
80%Cu ₂ S-PAN+I	CuI	163427	F-43m	216	100.0	5.374	

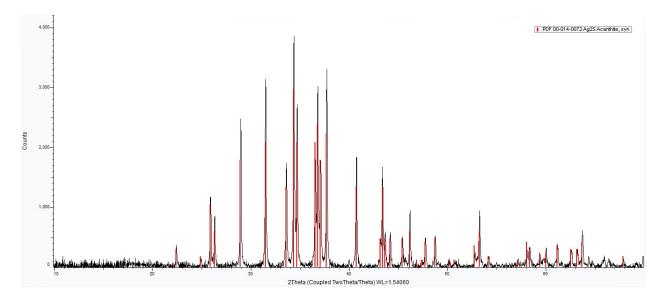


Figure S2. As-received Ag₂S reagent showing ICDD peak location fitting with the Ag₂S (acanthite, syn) phase (PDF 14-0072).

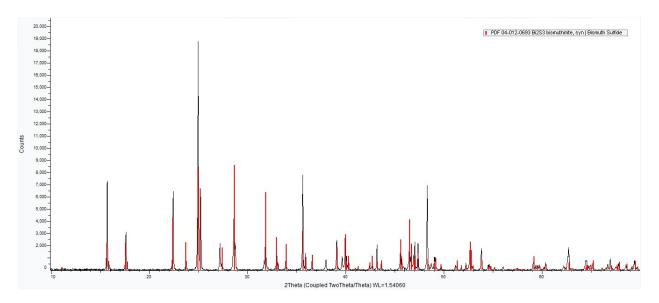


Figure S3. As-received Bi₂S₃ reagent showing ICDD peak location fitting with the Bi₂S₃ (bismuthinite, syn) phase (PDF 04-012-0693).

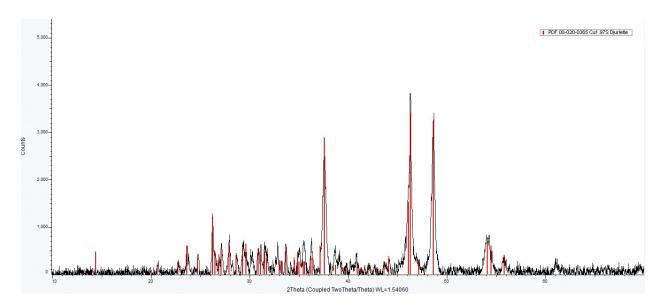


Figure S4. As-received Cu₂S reagent showing ICDD peak location fitting with the Cu_{1.97}S phase (20-0365) not in the ICSD.

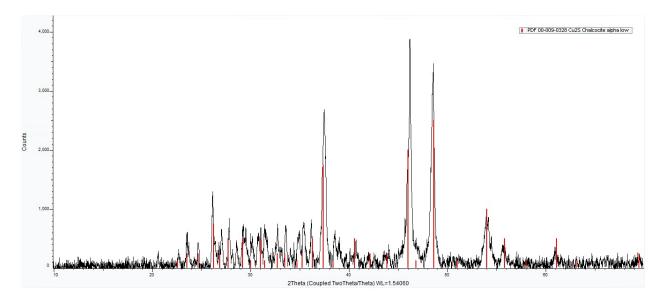


Figure S5. As-received Cu₂S reagent showing ICDD peak location fitting with the Cu₂S phase (09-0328) not in the ICSD.

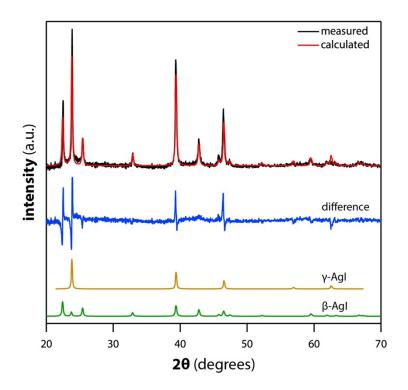


Figure S6. Summary of Rietveld refinement for 75%Ag₂S-PAN+I showing the peak contributions for γ-AgI and β-AgI.

4 Scanning Electron Microscopy and Energy Dispersive Spectroscopy Data

EDS was collected in low vacuum conditions (30Pa). Due to the partial atmosphere in the chamber, the electron beam will be scattered. Therefore, any quantitative results are for comparison only, and are not truly quantitative.

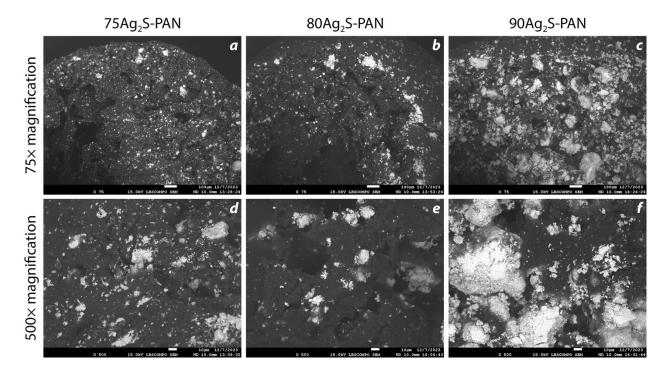


Figure S7. SEM micrographs for Ag₂S-PAN samples without iodine including (a-c) 75× and (d-f) 500× magnification micrographs for (a,d) 75Ag₂S-PAN, (b,e) 80Ag₂S-PAN, and (c,f) 90Ag₂S-PAN.

SUPPORTING INFORMATION

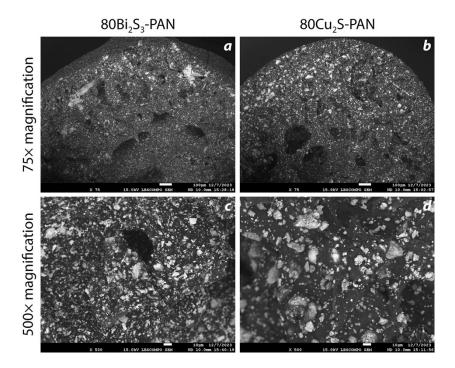


Figure S8. SEM micrographs for (a,b) 80Bi₂S₃-PAN and (c,d) 80Cu₂S-PAN without iodine including (a,b) 75× and (c,d) 500× magnification micrographs.

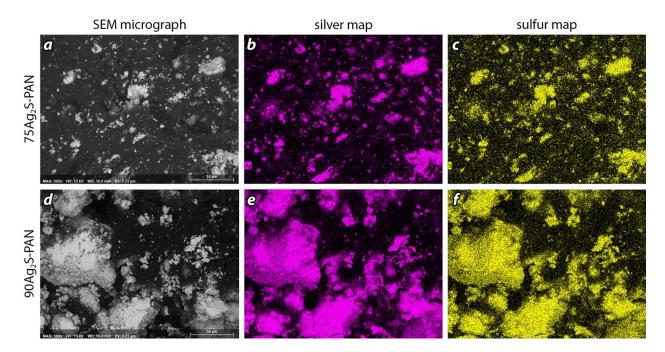


Figure S9. (a,d) SEM and (b,c,e,f) EDS data for (a-c) 75Ag₂S-PAN and (d-f) 90Ag₂S-PAN composites showing the (b,e) Ag-maps and (c,f) S-maps. Note that the 80Ag₂S-PAN data is not provided but looked similar.

SUPPORTING INFORMATION

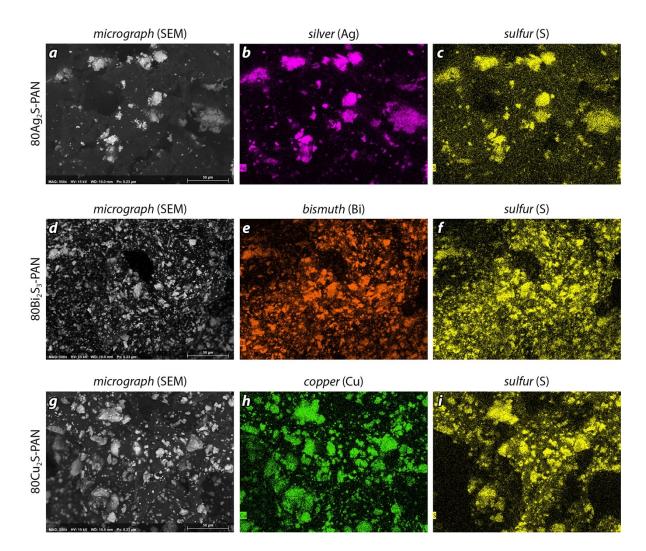


Figure S10. (a,d,g) SEM and (b,c,e,f,h,i) EDS data for (a-c) 80Ag₂S-PAN, (d-f) 80Bi₂S₃-PAN, and (g-i) 80Cu₂S-PAN composites showing the (b) Ag-map, (e) Bi-map, (h) Cu-map, and (c,f,i) S-maps.

5 Comparison with other PAN Composites for Iodine Capture

A summary of some previous experiments on PAN composites for iodine capture are provided in Table S5.

Table S5. Summary of iodine loading in PAN composites from the literature including the composite sorbent type, the active sorbent, the loading temperature (T_{LOAD}), the iodine loading ($q_e = mg/g$), and the reference.

Sorbent type	Sorbent (mass%)	T_{LOAD} (°C)	Iodine loading (mg/g)	Reference
75Ag-PAN	Ag ⁰ (75%)	120	753	Chong et al. ^{S1}
75Bi-PAN	Bi ⁰ (75%)	120	474	Chong et al. ^{S1}
75Cu-PAN	Cu ⁰ (75%)	120	1457	Chong et al. ^{S1}
75Sn-PAN	Sn ⁰ (75%)	120	1669	Chong et al. ^{S1}
xBi ₂ S ₃ -PAN	Bi ₂ S ₃ (30, 50, 70, 80, 90%)	85	490–1203	Yu et al. ⁸⁵
$x Sn S_2$ -PAN	SnS ₂ (10, 30, 50, 70, 80, 90%)	85	536–2727	Yu et al. ^{S6}
xSn_2S_3 -PAN	Sn_2S_3 chalcogel (33, 50%)	20–25	487, 1144	Riley et al. ⁸⁴
75Ag ₂ S-PAN	Ag ₂ S (75%)	130	668	Current study
80Ag ₂ S-PAN	$Ag_2S(80\%)$	130	723	Current study
90Ag ₂ S-PAN	Ag ₂ S (90%)	130	826	Current study
80Bi ₂ S ₃ -PAN	Bi_2S_3 (80%)	130	909	Current study
80Cu ₂ S-PAN	Cu ₂ S (80%)	130	1095	Current study

6 References

- S1. S. Chong, B. J. Riley, R. M. Asmussen, A. Fujii Yamagata, J. Marcial, S. Lee and C. A. Burns, *ACS Appl. Polym. Mater.*, 2022, **4**, 9040-9051.
- S2. B. J. Riley, S. Chong and C. L. Beck, Ind. Eng. Chem. Res., 2021, 60, 17162-17173.
- S3. B. J. Riley, S. Chong, R. M. Asmussen, A. Bourchy and M. H. Engelhard, *ACS Appl. Polym. Mater.*, 2021, **3**, 3344-3353.
- S4. B. J. Riley, D. Pierce, A, J. Chun, J. Matyáš, W. C. Lepry, T. Garn, J. Law and M. G. Kanatzidis, *Environ. Sci. Technol.*, 2014, **48**, 5832-5839.
- S5. Q. Yu, X. Jiang, Z. Cheng, Y. Liao, Q. Pu and M. Duan, New J. Chem., 2020, 44, 16759-16768.
- S6. Q. Yu, X. Jiang and M. Duan, Soc. Sci. Res. Net., 2021, DOI: 10.2139/ssrn.3978461.