SUPPLEMENTARY INFORMATION

Engineering yeast for production of plant terpenoids using synthetic biology approaches

Jean-Alexandre Bureau¹, Magdalena Escobar Oliva¹, Yueming Dong¹, and Codruta Ignea^{1*}

¹Department of Bioengineering, McGill University, Montreal, QC, Canada, H3A 0C3

*Corresponding author: Codruta Ignea, e-mail: codruta.ignea@mcgill.ca

SUPPLEMENTARY TABLES

Production	Biosynthetic pathway	Target Terpenoid	Titer	Ref.
Platform				
Salvia	Hairy roots cultures	tanshinones	2.51-2.89-fold	1
miltiorrhiza			increase of major	
			tanshinones	
Centella asiatica	Cell suspensions derived from	centellosides,	900 μg/g DW	2
	callus cultures	madecassoside,		
		asiaticoside		
Nicotiana	Heterologous expression of lipid	artemisinin	3 μg/g DW	3
benthamiana	transfer proteins			
N. benthamiana	Organelle compartmentalization	geraniol	129 μg/g FW	4
N. benthamiana	Metabolic pathway shunting	taxa-4(5),11(12)-	48 μg/g DW	5
		diene		
Physcomitrella	Heterologous expression	taxa-4(5),11(12)-	0.05% fresh weight	6
patens		diene	of tissue	
Chlamydomonas	Redirecting the metabolic flux	sclareol	up to 656 mg L^{-1}	7
reinhardtii	through the MEP pathway		with a maximal	
			productivity of	
			78 mg L ⁻¹ day ⁻¹	
E. coli	Multivariate-modular approach	taxa-4(5),11(12)-	1.02 g L ⁻¹	8
		diene		
E. coli	CRISPR/Cas9 mediated genome	β-carotene	2.0 g L ⁻¹	9
	integration			
<i>in vitro</i> platform	Synthetic crotonyl-coenzyme	limonene	0.22 mg L ⁻¹ h ⁻¹	10
	(CoA)/ethylmalonyl-	farnesene		
	CoA/hydroxybutyryl-CoA cycle			
	(CETCH)			
<i>in vitro</i> platform	cell-free system	cannabinoids	~0.5 g L ⁻¹	11
		cannabigerolic acid		
		(CBGA)		

Table S1: Reports on engineering approaches for production of plant terpenoids.

Table S2: Overview of heterologous biosynthetic pathway expression for sesquiterpenoid production in *S. cerevisiae.* Examples of terpenoids produced by industrial fermentation are denoted with *.

Product	Biosynthetic pathway	Approach	Titer	Ref.
nerolidol	Amorpha-4,11-diene synthase (ADS) from <i>Artemisia annua</i>	Compartmentalization in the mitochondria	427 mg L ⁻¹	12
nerolidol	Amorpha-4,11-diene synthase (ADS) and Cytochrome P450 mono- oxygenase (CYP71AV1) from <i>Artemisia annua</i>	Multiple metabolic engineering approaches	25 g L ⁻¹	13
α-santalene	Santalene synthase (SaSSy) from <i>Santalum</i> <i>album</i> and SanSyn from <i>Clausena lansium</i>	SanSyn (F441V), deletion of the yeast transcriptional repressor ROX1 and knockout of the genes encoding the enzymes involved in farnesyl diphosphate (FPP) consumption	842 mg L ⁻¹	14
santalol	Santalene synthase (SaSSy) from <i>Santalum</i> <i>album</i> and SanSyn from <i>Clausena lansium</i> , and CYP736A167 from <i>S.</i> <i>album</i>	SanSyn (F441V), deletion of the yeast transcriptional repressor ROX1 and knockout of the genes encoding the enzymes involved in farnesyl diphosphate (FPP) consumption	1.07 g L ⁻¹	14
<i>trans</i> - caryophylene	<i>trans</i> -caryophylene synthase from <i>S. fruticosa</i>	Tandem heterozygous deletions positive genetic interactors of HMG2	125 mg L ⁻¹	15
β-farnesene*	β -farnesene synthase (FS) from <i>Artemisia apiacea</i>	Genome scale modification to reprogram yeast central metabolism	130 g L ⁻¹	16
patchoulol	Patchoulol synthase (PTS) from <i>Pogostemon cablin</i>	Fusion of farnesyl diphosphate synthase (FPPS) and PTS in ERG9-repressed strain	23 mg L ⁻¹	17
kauniolide	Germacrene A (GAS), costunolide (COS), kauniolide (KAS) synthases, germacrene A oxidase (GAO)	Multigene Crispr/Cas9 mediated chromosomal integration	nd	18
<i>trans-</i> nerolidol	<i>trans</i> -nerolidol synthase (NES1) from <i>Actinidia</i> <i>chinensis</i>	Chromosomal gene amplification driven by gen haploinsufficiency	~2 g L ⁻¹	19
<i>trans</i> - nerolidol	<i>trans</i> -nerolidol synthase (NES1) from <i>Actinidia</i> <i>chinensis</i>	PEST sequence-dependent endoplasmic reticulum-associated protein degradation (ERAD) system established for Erg9p	~100 mg L ⁻¹	20

Table S3: Overview of heterologous biosynthetic pathway expression for monoterpenoid production in yeast. The majority of case studies listed below are engineered in *S. cerevisiae* terpene-producing platforms. Examples of terpenoids produced in *Y. lipolytica* are marked with *, while in *R. toruloides* are shown with **.

Product	Biosynthetic pathway	Approach	Titer	Ref.
1.			1.00 1.1	21
limonene	Limonene synthase from	Orthogonal pathway using NPP	166 mg L ¹	21
	Citrus limon (ClLimS)	as isomeric alternative	in semi-fed batch	22
		substrate	91 / mg L ¹	
1.			in fed batch	23
limonene	Limonene synthase from	Compartmentalization in	2.6 g L ⁻¹	23
	Citrus limon (ClLimS)	peroxisomes	in semi-fed batch	24
limonene*	Limonene synthase from	Overexpressing	5.11 mg L^{-1}	24
	<i>Citrus limon (Cl</i> LimS)	YALI0F19492p		
limonene**	Limonene synthase from	Fusion of <i>Cl</i> LimS with <i>cis</i>	15.45 g L ⁻¹	25
	Citrus limon (ClLimS)	prenyl transferase NPPS from		
		Solanum lycopersicum		
sabinene	Sabinene synthase from	Orthogonal pathway using NPP	113 mg L ⁻¹	21
	Salvia pomifera (SpSabS)	as isomeric alternative	in semi-fed batch	
		substrate		
trans-sabinol	Sabinene synthase from	Orthogonal pathway using NPP	nd	21
	Salvia pomifera (SpSabS),	as isomeric alternative		
	and Sabinene hydroxylase	substrate		
	CYP750B1 from Thuja plicata			
α-pinene	α -pinene synthase from <i>Pinus</i>	Orthogonal pathway using NPP	nd	21
-	taeda (PtPinS)	as isomeric alternative		
		substrate		
1,8-cineole	1,8-cineole synthase from	Orthogonal pathway using NPP	nd	21
	Salvia fruticosa	as isomeric alternative		
		substrate		
geraniol	Geraniol synthase from	Compartmentalization in	5.52 g L ⁻¹	23
0	Ocimum basilicum	peroxisomes	in semi-fed batch	
linalool	Linalool synthase from	Iterative design-build-test-	~0.3 mg L ⁻¹	26
	diterpene Mentha citrate	learn engineering cycle	e	
	(McLIS)			

Table S4: Overview of heterologous expression of terpene synthase and decoration enzymes for diterpenoid production in *S. cerevisiae*.

Product	Terpene synthase	Decoration	Approach	Titer	Ref.
		enzyme			
miltiradiene	Labdadienyl/ copalyl diphosphate synthase		Fusion of SmCPS and	365 mg L ⁻¹	27
	(<i>Sm</i> CPS) and kaurene synthase-like (<i>Sm</i> KSL) from <i>Salvia miltiorrhiza</i>		<i>Sm</i> KSL and fusion of Bts1p and Erg20p		
sclareol	Class II diterpene synthase and sclareol synthase from <i>Salvia sclarea</i>		Global metabolic rewiring	11.4 g L ⁻¹ in fed-batch fermentation	28
manool	Copalyl diphosphate synthase from <i>S. fruticosa</i> and sclareol synthase from <i>S. sclarea</i>		Combinatorial biosynthesis	96 mg L ⁻¹	29
manoyl oxide	8-hydroxy copalyl diphosphate synthase (CcCLS) from <i>Cistus creticus</i> and miltiradiene synthase from <i>S. pomifera</i> (SpMilS)		Combinatorial biosynthesis	36 mg L ⁻¹	29
ferruginol	Copalyl diphosphate synthase from <i>S. fruticosa</i> and miltiradiene synthase from <i>S. pomifera</i> (SpMilS)	CPR/CYP76AH24 from Salvia pomifera	Gene mining, pathway elucidation	21.2 mg L ⁻¹	27
carnosic acid	Copalyl diphosphate synthase from <i>S. fruticosa</i> and miltiradiene synthase from <i>S. pomifera</i> (SpMilS)	CPR/CYP76AH24 and CYP76AK6 from <i>S. pomifera</i>	Gene mining, pathway elucidation	1 mg L ⁻¹	27
pisiferic acid	Copalyl diphosphate synthase from <i>S. fruticosa</i> and miltiradiene synthase from <i>S. pomifera</i> (SpMilS)	Cytochrome P450s from <i>S. pomifera</i> CYP76AH24 (F112L) and CYP76AK6	Rational mutagenesis of CYP76AH24	2.65 mg L ⁻¹	30
salviol	Copalyl diphosphate synthase from <i>S. fruticosa</i> and miltiradiene synthase from <i>S. pomifera</i> (SpMilS)	Cytochrome P450s from <i>S. pomifera</i> CYP76AH24 (F112L) and CYP71BE52	Rational mutagenesis of CYP76AH24	mg L ⁻¹	30
forskolin	CfTPS2 and CfTPS3 from <i>Coleus</i> forskohlii	NADPH-dependent cytochrome P450 oxidoreductase (CfPOR), CfCYP76AH15, CfCYP76AH11, CfCYP76AH16 and CfACT1-8	Pathway elucidation	40 mg L ⁻¹	31
casbene	Geranylgeranyl diphospahse synthase from <i>Phomopsis</i>		Ergosterol and glucose-	$108.5 \text{ mg } \text{L}^{-1}$	32

	amygdali (PaGGPPS) and		sensitive		
	casbene synthase from		promoter-		
	Ricinus communis (RcCBS)		controlled		
			expression of		
			ERG1, ERG9		
			and ERG20		
taxadiene	Taxadiene synthase (TASY)		Multi-	129 mg L ⁻¹ in	33
	from Taxus cuspidata		chromosomal	shake-flask	
	1		integrations	fermentation	
			and improved		
			enzvme		
			solubility		
taxadien-5α-	Taxadiene synthase (TASY)	Taxadiene-5α-	Optimization	$10.6 \text{ mg } \text{L}^{-1}$	34
ol	from Taxus cuspidata	hvdroxvlase	of substrate		35
		(CYP725A4) from	channeling		
		Taxus cuspidata	through		
		I anus cuspidada	heterologous		
			neterologous		
tava_	Taxadiene synthase from T	Tavadiene 5a-	E coli and S	1 mg I ⁻¹	36
1(20) 11(12)	hravifolia	hydroxylase	E. Con and S.	I IIIg L	
4(20),11(12)	<i>orevijoliu</i>	Tavadian 5g al	cereviside co-		
actory 108		Taxaulell-Ju-Ol	culture system		
acetoxy-10p-		$(T \land T)$ and taxana			
of (putative)		(IAI) and taxane			
		10p-nydroxylase			
		(TOPC TP) Irom			
1		Taxus cuspiaaia	D (1	2 70 T-1	37
triptonide	with the biosynthetic	CYP82D213,	Pathway	3./9 mg L ¹	21
	patnway	$C1P\delta 2D2/4,$	reconstructon		
		CYP/IBE86 and			
		CYP/IBE85 from			
		T. willfordii			

Table S5: Overview of heterologous expression of terpene synthase and decoration enzymes for triterpenoid production in yeast. Most case studies listed below are engineered in *S. cerevisiae* terpene-producing platforms. Examples of terpenoids produced in *Y. lipolytica* are marked with *.

Product	Terpene synthase	Decoration enzyme	Approach	Titer	Ref.
β-amyrin	β-amyrin synthase (SAD1) from Avena strigosa		Site directed mutagenesis of SAD1	nd	38
friedelin	Oxidosqualene cyclase (OSC4) from <i>T. willfordii</i>		Deletion of ubiquitin conjugating enzyme UBC7	0.5 mg L ⁻¹	39
polpunonic acid	Oxidosqualene cyclase (OSC4) from <i>T. willfordii</i>	CYP712K1 from T. willfordii	Deletion of ubiquitin conjugating enzyme UBC7	1.4 mg L ⁻¹	39
protopanaxa- diol	Dammarenediol-II synthase (DDS) from <i>Panax</i> ginseng	Protopanaxadiol synthase (PPDS) from <i>P. ginseng</i>	Upstream pathway optimization	1189 mg L ⁻¹ by two-phase fermentation	40
betulinic acid*	Lupeol synthase from <i>R. communis</i> (<i>Rc</i> Lus)	Lupeol C-28 oxidase BPLO (CYP716A180) from Betula platyphylla	Upstream pathway optimization and improved CYP/CPR interactions in <i>Y</i> . <i>lipolytica</i>	51.87 mg L ⁻¹	41
lupeol	Lupeol synthase from <i>Taraxacum</i> <i>koksaghyz</i>		Enhanced metabolic flux through MVA pathway	0.16 mg g ⁻¹ CDW	42
ginsenosides Rg3	Dammarenediol-II synthase (DDS) from <i>P. ginseng</i>	Protopanaxadiol synthase (PPDS) and PgUGT74AE2 and PgUGT94Q2 from P. ginseng	Pathway discovery	1.3 mg L ⁻¹	43
ginsenosides Rd	Dammarenediol-II synthase (DDS) from <i>P. ginseng</i>	Protopanaxadiol synthase (PPDS) and PgUGT71A27, PgUGT74AE2 and PgUGT94Q2 from P. ginseng	Pathway discovery	nd	43
ginsenosides Rh1 and F1	Dammarenediol-II synthase (DDS) from <i>P. ginseng</i>	Protopanaxadiol synthase (PPDS) and PgUGTPg100 from P. ginseng		92.8 mg L ⁻¹ , 42.1 mg L ⁻¹ , respectively	44
ginsenosides Rh2	Dammarenediol-II synthase (DDS) from <i>Panax</i> ginseng	Protopanaxadiol synthase (PPDS) from <i>P. ginseng</i> and UGTPn50 from <i>P. notoginseng</i>	Directed evolution of UGTPn50 from <i>P.</i> <i>notoginseng</i>	2.25 g L ⁻¹ in fed- batch fermentation	45
ginsenosides	Dammarenediol-II	Protopanaxadiol	Pathway Optimization	1.3 g L^{-1}	46

Rg2	synthase (DDS)	synthase (PPDS),			
	from <i>Panax</i>	CYP716A53v2 and			
	ginseng	PgUGT71A54			
ginsenosides	Dammarenediol-II	protopanaxadiol	Pathway Optimization	3.6 g L ⁻¹	46
Re	synthase (DDS)	synthase (PPDS),			
	from Panax	CYP716A53v2 and			
	ginseng	<i>Pg</i> UGT71A53,			
		PgUGT71A54			

Table S6: Overview of heterologous expression of terpene synthase and decoration enzymes for carotenoid production in yeast. Most case studies listed below are engineered in *S. cerevisiae* terpene-producing platforms. Examples of terpenoids produced in *Y. lipolytica* are marked with *.

Product	Terpene	Decoration enzyme	Approach	Titer	Ref.
lycopene	Phytoene synthase (CrtB)	Phytoene desaturase (CrtI)	Improve lipid oil- triacylglycerol	2.37 g L ⁻¹ in fed-batch	47
			(TAG) metabolism	fermentation	10
β-carotene	Phytoene	Phytoene desaturase	Enzyme fusion	$\sim 3 \text{ mg L}^{-1}$	48
	synthase/	(CrtI)	strategy creating	DCW	
	lycopene cyclase		tridomain CrtYBI		
	(CrtYB)		enzyme		10
β-carotene*	Phytoene	Phytoene desaturase (CrtI),	Overexpressing of	4.5 g L ⁻¹	49
	synthase/	β-carotene ketolase	GGPP synthase,	in	
	lycopene cyclase	(CrtW), β-carotene	ERG13, and HMG	fermentation	
	(CrtYB)	hydroxylas (CrtZ), β-			
		carotene ketolase (OBKT)			
astanxanthin	Phytoene	Phytoene esaturase	Rational mutagenesis	47.18 mg L ⁻¹	50
	synthase/	(CrtI), β -carotene ketolase	of β-carotene		
	lycopene cyclase	(CrtW),	ketolase,		
	(CrtYB)	β-carotene hydroxylase	overexpression of		
		(CrtZ), β -carotene ketolase	CrtE03M, tHMG1,		
		(OBKT)	CrtI and CrtYB		
zeaxanthin	GGPP synthase	Phytoene desaturase (CrtI)	Combined ligase	2.4 mg L ⁻¹	51
	(CrtE), phytoene		cycling reaction with		
	synthase (CrtB)		DNA assembler for		
	lycopene cyclase		larger plasmid		
	(CrtY)		assembly in vivo		
canthaxanthin	Phytoene	Phytoene dehydrogenase	Chromosomal	36.1 mg L ⁻¹	52
*	synthase/	(carB) and β -carotene/	expression of β-		
	lycopene cyclase	zeaxanthin 4-ketolase	carotene biosynthetic		
	(carRP)	(CrtW)	pathway		

Table S7: Overview of strategies for engineering biosynthetic enzymes involved in terpene upstream pathway.

Wild-type enzyme	Protein	Engineered	Engineered activity	Ref.
	engineering	mutations		
	strategy			
Farnesyl	Site-directed	F96W-N127W	Dominant negative GPP synthase	53
pyrophosphate	mutagenesis		343-fold improvement in sabinene	
synthetase (Erg20p)			production	
Farnesyl	Site-directed	F96C	GGPP synthase	54
pyrophosphate	mutagenesis		70-fold improvement in sclareol	
synthetase (Erg20p)	C		production	
Farnesyl	Degradation	N-terminal	Decreased half-life	55
pyrophosphate	signal addition	degron K3K15	27-fold improvement in	
synthetase (Erg20p)	-	addition	monoterpene production	
Citrus lemon	Site-directed	H570F or Y	NPP dedicated variant	21
Limonene synthase	mutagenesis		Shift substrate preference from	
(ClLimS)			GPP to NPP	
S. pomifera	Site-directed	H561F	NPP dedicated variant.	21
Sabinene synthase	mutagenesis		7-fold increase in sabienene titer	
(SpSabS)				
Citrus lemon	Site-directed	H570V, L or I	Noncanonical C11 variant	56
Limonene synthase	mutagenesis		Accepts 2-methyl-GPP to produce	
(ClLimS)			2-methyllimonene	
Salvia fruticosa	Site-directed	F571Y	Noncanonical C11 variant	56
1,8-cineole synthase	mutagenesis		Accepts 2-methyl-GPP to produce	
(SfCinS)			2-methyl-α-terpineol	
S. fruticosa	Site-directed	N388S-I451A	Noncanonical C11 variant	56
1,8-cineole synthase	mutagenesis		Accepts 2-methyl-GPP to produce	
(SfCinS)			2-methylmyrcene	
Pinus taeda	Site-directed	F579V	Noncanonical C11 variant	56
Pinene synthase	mutagenesis		Accepts 2-methyl-GPP to produce	
(<i>Pt</i> PinS)			2-methyllinalool	56
Ocimum basilicum	Site-directed	F607L	Noncanonical C11 variant	56
Myrcene synthase	mutagenesis		Accepts 2-methyl-GPP to produce	
(<i>Ob</i> MyrS)			2-methyllinalool	20
Avena strigosa	Site-directed	S728F	Preferentially converts	38
β -amyrin synthase	mutagenesis		dioxidosqualene (over	
(SAD1)			oxidosqualene) to dammarane	20
Arabidopsis thaliana	Site-directed	T729F	Preferentially converts	30
Lupeol synthase	mutagenesis		dioxidosqualene to	
(AtLUPI)			epoxydammaranes	14
Clausena lansium	Site-directed	F441V	Changed product specificity;	14
Santalene synthase	mutagenesis		Sandalwood oil-like sesquiterpene	
.			profile	57
Isoprene synthase	Combinatorial	F338-V341-	4-told improvement in isoprene	57
(ISPS)	mutagenesis	F485	yield	

Table S8: Reports of engineering cytochrome P459s involved in terpene biosynthesis.

Wild-type enzyme	Wild-type activity	Protein engineering strategy	Engineered mutations	Engineered activity	Ref.
Salvia pomifera CYP76AH24	Miltiradiene/ Abietatriene oxidase	Site-directed mutagenesis	F112L	Improved product specificity for ferruginol; Increased production of downstream minor products by 14-24-fold	30
<i>Pinus taeda</i> CYP720B1	Abietadienol/ abietadienal oxidase	Rational mutagenesis	G359A	Improved product specificity for 18- hydroxy-miltiradiene; 2- fold higher efficiency than wild-type enzyme.	29
<i>Pinus taeda</i> CYP720B1	Abietadienol/ abietadienal oxidase	Rational mutagenesis	T295S	Relaxed product specificity	29
<i>Pinus taeda</i> CYP720B1	Abietadienol/ abietadienal oxidase	Rational mutagenesis	T295S-I223G	Improved product specificity for 19- hydroxy-miltiradiene	29
<i>Pinus taeda</i> CYP720B1	Abietadienol/ abietadienal oxidase	Rational mutagenesis	L123V-I223L	Improved product specificity for 3β- hydroxy-manool	29
<i>Pinus taeda</i> CYP720B1	Abietadienol/ abietadienal oxidase	Rational mutagenesis	I223G-L466M	Improved product specificity for 19- hydroxy-manool	29
Coleus forskolii CYP76AH15	13R-manoyl oxide oxidase	Site-directed mutagenesis	A99I S235G-Y236F L366F L366E	Improved catalytic activity; Enhanced production of 11-oxo-13R-manoyl oxide	58

SUPPLEMENTARY FIGURES

Figure S1. Heme biosynthesis in yeast. Heme biosynthesis starts with the decarboxylation of glycine and condensation reaction with succinyl-CoA and glycine to produce aminolaevulinic acid (ALA) in mitochondria. Subsequently, two ALA molecules are exported from the mitochondria to the cytosol to form porphobilinogen (PBG). Four units of PBG molecules are polymerized through deamination processes, and the chain is closed to form the characteristic coproporphyrinogen ring in heme structures. The coproporphyrinogen ring is transported to the mitochondria and goes through a series of modifications at its acetate and propionate side chains. Lastly, the insertion of a ferrous iron atom in the middle of the ring produces the final heme product. Rate limiting steps in heme biosynthesis are catalyzed by Hem3p followed by Hem2p and Hem12p⁵⁹. Overexpression of HEM3 gene in yeast was found beneficial for terpene production^{27, 30, 60}. Yeast enzymes are shown in brown, overexpressed enzymes are shown in bold.

SUPPLEMENTARY SCHEMES

Figure S2. Redox metabolism of NADH and NADPH in yeast. NADH and NADPH cofactors donate electrons and hydrogens to reactions involved in yeast central metabolism. The ratio of NADH/NAD+ (shown in red) and NADPH/NADP+ (shown in blue) is crucial for redox reactions performed by different native enzymes. Any change to the intracellular redox balance could affect yeast metabolic network. Optimizing cofactor regeneration supports improved production of terpenoids.

UDP-sugars synthesized in yeast

Figure S3. UDP- sugars synthesized in yeast and plant. Plant UDP-sugars, as essential components in the cell wall, have a highly diverse profile (bottom panel) in comparison with yeast counterparts (top panel). UDP-D-glucose is a common sugar highly conserved from bacteria to human and can be modified into different other UDP-sugars. With a rich cytosolic pool of UDP-D-glucose, yeast is a suitable platform for reconstruction of plant UDP-sugars that can further provide the fitted glycosylation residues for production of plant terpene glycosides or saponins.

References:

- B. Xing, D. Yang, H. Yu, B. Zhang, K. Yan, X. Zhang, R. Han and Z. Liang, *Plant Sci*, 2018, 276, 229-238.
- 2. S. Mangas, E. Moyano, L. Osuna, R. M. Cusido, M. Bonfill and J. Palazón, *Biotechnol Lett*, 2008, **30**, 1853-1859.
- B. Wang, A. B. Kashkooli, A. Sallets, H. M. Ting, N. C. A. de Ruijter, L. Olofsson, P. Brodelius, M. Pottier, M. Boutry, H. Bouwmeester and A. R. van der Krol, *Metab Eng*, 2016, 38, 159-169.
- 4. L. Dong, E. Jongedijk, H. Bouwmeester and A. Van Der Krol, *New Phytol*, 2016, **209**, 679-690.
- 5. M. M. Hasan, H. S. Kim, J. H. Jeon, S. H. Kim, B. Moon, J. Y. Song, S. H. Shim and K. H. Baek, *Plant Cell Rep*, 2014, **33**, 895-904.
- 6. A. Anterola, E. Shanle, P. F. Perroud and R. Quatrano, *Transgenic research*, 2009, 18, 655-660.
- 7. A. Einhaus, J. Steube, R. A. Freudenberg, J. Barczyk, T. Baier and O. Kruse, *Metab Eng*, 2022, **73**, 82-90.
- 8. P. K. Ajikumar, W. H. Xiao, K. E. Tyo, Y. Wang, F. Simeon, E. Leonard, O. Mucha, T. H. Phon, B. Pfeifer and G. Stephanopoulos, *Science*, 2010, **330**, 70-74.
- 9. Y. Li, Z. Lin, C. Huang, Y. Zhang, Z. Wang, Y. J. Tang, T. Chen and X. Zhao, *Metab Eng*, 2015, **31**, 13-21.
- 10. S. Sundaram, C. Diehl, N. S. Cortina, J. Bamberger, N. Paczia and T. J. Erb, *Angew Chem Int Ed Engl*, 2021, **60**, 16242-16242.
- 11. M. A. Valliere, T. P. Korman, M. A. Arbing and J. U. Bowie, *Nat Chem Biol*, 2020, **16**, 1427-1433.
- 12. J. Yuan and C. B. Ching, *Metab Eng*, 2016, **38**, 303-309.
- C. J. Paddon, P. J. Westfall, D. J. Pitera, K. Benjamin, K. Fisher, D. McPhee, M. D. Leavell, A. Tai, A. Main, D. Eng, D. R. Polichuk, K. H. Teoh, D. W. Reed, T. Treynor, J. Lenihan, M. Fleck, S. Bajad, G. Dang, D. Dengrove, D. Diola, G. Dorin, K. W. Ellens, S. Fickes, J. Galazzo, S. P. Gaucher, T. Geistlinger, R. Henry, M. Hepp, T. Horning, T. Iqbal, H. Jiang, L. Kizer, B. Lieu, D. Melis, N. Moss, R. Regentin, S. Secrest, H. Tsuruta, R. Vazquez, L. F. Westblade, L. Xu, M. Yu, Y. Zhang, L. Zhao, J. Lievense, P. S. Covello, J. D. Keasling, K. K. Reiling, N. S. Renninger and J. D. Newman, *Nature*, 2013, **496**, 528-532.
- 14. W. Zha, F. Zhang, J. Shao, X. Ma, J. Zhu, P. Sun, R. Wu and J. Zi, *Nat Commun*, 2022, **13**, 2508.
- 15. C. Ignea, F. A. Trikka, I. Kourtzelis, A. Argiriou, A. K. Kanellis, S. C. Kampranis and A. M. Makris, *Microb Cell Fact*, 2012, **11**, 162.
- A. L. Meadows, K. M. Hawkins, Y. Tsegaye, E. Antipov, Y. Kim, L. Raetz, R. H. Dahl, A. Tai, T. Mahatdejkul-Meadows, L. Xu, L. Zhao, M. S. Dasika, A. Murarka, J. Lenihan, D. Eng, J. S. Leng, C. L. Liu, J. W. Wenger, H. Jiang, L. Chao, P. Westfall, J. Lai, S. Ganesan, P. Jackson, R. Mans, D. Platt, C. D. Reeves, P. R. Saija, G. Wichmann, V. F. Holmes, K. Benjamin, P. W. Hill, T. S. Gardner and A. E. Tsong, *Nature*, 2016, 537, 694-697.
- 17. L. Albertsen, Y. Chen, L. S. Bach, S. Rattleff, J. Maury, S. Brix, J. Nielsen and U. H. Mortensen, *Appl Environ Microbiol*, 2011, **77**, 1033-1040.
- 18. S. Baek, J. C. Utomo, J. Y. Lee, K. Dalal, Y. J. Yoon and D. K. Ro, *Metab Eng*, 2021, **64**, 111-121.
- 19. B. Peng, L. Esquirol, Z. Lu, Q. Shen, L. C. Cheah, C. B. Howard, C. Scott, M. Trau, G. Dumsday and C. E. Vickers, *Nat Commun*, 2022, **13**, 2895.
- 20. B. Peng, M. R. Plan, P. Chrysanthopoulos, M. P. Hodson, L. K. Nielsen and C. E. Vickers, *Metab Eng*, 2017, **39**, 209-219.

- 21. C. Ignea, M. H. Raadam, M. S. Motawia, A. M. Makris, C. E. Vickers and S. C. Kampranis, *Nat Commun*, 2019, **10**, 3799.
- 22. S. Cheng, X. Liu, G. Jiang, J. Wu, J. L. Zhang, D. Lei, Y. J. Yuan, J. Qiao and G. R. Zhao, *ACS Synth Biol*, 2019, **8**, 968-975.
- 23. S. Dusseaux, W. T. Wajn, Y. Liu, C. Ignea and S. C. Kampranis, *Proc Natl Acad Sci U S A*, 2020, **117**, 31789-31799.
- 24. J. Li, K. Zhu, L. Miao, L. Rong, Y. Zhao, S. Li, L. Ma, J. Li, C. Zhang, D. Xiao, J. L. Foo and A. Yu, *ACS Synth Biol*, 2021, **10**, 884-896.
- 25. S. Liu, M. Zhang, Y. Ren, G. Jin, Y. Tao, L. Lyu, Z. K. Zhao and X. Yang, *Biotechnol Biofuels*, 2021, 14, 243.
- C. M. Denby, R. A. Li, V. T. Vu, Z. Costello, W. Lin, L. J. G. Chan, J. Williams, B. Donaldson, C. W. Bamforth, C. J. Petzold, H. V. Scheller, H. G. Martin and J. D. Keasling, *Nat Commun*, 2018, 9, 965.
- 27. C. Ignea, A. Athanasakoglou, E. Ioannou, P. Georgantea, F. A. Trikka, S. Loupassaki, V. Roussis, A. M. Makris and S. C. Kampranis, *Proc Natl Acad Sci U S A*, 2016, **113**, 3681-3686.
- 28. X. Cao, W. Yu, Y. Chen, S. Yang, Z. K. Zhao, J. Nielsen, H. Luan and Y. J. Zhou, *Metab Eng*, 2023, **75**, 19-28.
- 29. C. Ignea, E. Ioannou, P. Georgantea, S. Loupassaki, F. A. Trikka, A. K. Kanellis, A. M. Makris, V. Roussis and S. C. Kampranis, *Metab Eng*, 2015, **28**, 91-103.
- 30. C. Ignea, A. Athanasakoglou, A. Andreadelli, M. Apostolaki, M. Iakovides, E. G. Stephanou, A. M. Makris and S. C. Kampranis, *Sci Rep*, 2017, 7, 8855.
- I. Pateraki, J. Andersen-Ranberg, N. B. Jensen, S. G. Wubshet, A. M. Heskes, V. Forman, B. Hallstrom, B. Hamberger, M. S. Motawia, C. E. Olsen, D. Staerk, J. Hansen, B. L. Moller and B. Hamberger, *eLife*, 2017, 6, e23001.
- 32. R. Callari, Y. Meier, D. Ravasio and H. Heider, *Front Bioeng Biotechnol*, 2018, 6.
- B. Nowrouzi, R. A. Li, L. E. Walls, L. d'Espaux, K. Malcı, L. Liang, N. Jonguitud-Borrego, A. I. Lerma-Escalera, J. R. Morones-Ramirez, J. D. Keasling and L. Rios-Solis, *Microb Cell Fact*, 2020, 19, 200.
- 34. B. Nowrouzi, L. Lungang and L. Rios-Solis, *Microb Cell Fact*, 2022, **21**, 197.
- 35. L. E. Walls, J. L. Martinez, E. A. Del Rio Chanona and L. Rios-Solis, *Biotechnol J*, 2022, **17**, e2100414.
- 36. K. Zhou, K. Qiao, S. Edgar and G. Stephanopoulos, *Nat biotechnol*, 2015, **33**, 377-383.
- 37. N. L. Hansen, L. Kjaerulff, Q. K. Heck, V. Forman, D. Staerk, B. L. Møller and J. Andersen-Ranberg, *Nat Commun*, 2022, **13**, 5011.
- 38. M. Salmon, R. B. Thimmappa, R. E. Minto, R. E. Melton, R. K. Hughes, P. E. O'Maille, A. M. Hemmings and A. Osbourn, *Proc Natl Acad Sci U S A*, 2016, **113**, E4407-4414.
- 39. N. L. Hansen, K. Miettinen, Y. Zhao, C. Ignea, A. Andreadelli, M. H. Raadam, A. M. Makris, B. L. Moller, D. Staerk, S. Bak and S. C. Kampranis, *Microb Cell Fact*, 2020, **19**, 15.
- 40. Z. Dai, Y. Liu, X. Zhang, M. Shi, B. Wang, D. Wang, L. Huang and X. Zhang, *Metab Eng*, 2013, **20**, 146-156.
- 41. C. C. Jin, J. L. Zhang, H. Song and Y. X. Cao, *Microb Cell Fact*, 2019, 18, 77.
- 42. J. N. Bröker, B. Müller, N. van Deenen, D. Prüfer and C. Schulze Gronover, *Appl Microbiol Biotechnol*, 2018, **102**, 6923-6934.
- 43. S. C. Jung, W. Kim, S. C. Park, J. Jeong, M. K. Park, S. Lim, Y. Lee, W. T. Im, J. H. Lee, G. Choi and S. C. Kim, *Plant Cell Physiol*, 2014, **55**, 2177-2188.
- 44. W. Wei, P. Wang, Y. Wei, Q. Liu, C. Yang, G. Zhao, J. Yue, X. Yan and Z. Zhou, *Mol Plant*, 2015, **8**, 1412-1424.
- 45. P. Wang, W. Wei, W. Ye, X. Li, W. Zhao, C. Yang, C. Li, X. Yan and Z. Zhou, *Cell Discov*, 2019, **5**, 5.

- 46. C. Li, X. Yan, Z. Xu, Y. Wang, X. Shen, L. Zhang, Z. Zhou and P. Wang, *Commun Biol*, 2022, 5, 775.
- 47. T. Ma, B. Shi, Z. Ye, X. Li, M. Liu, Y. Chen, J. Xia, J. Nielsen, Z. Deng and T. Liu, *Metab Eng*, 2019, **52**, 134-142.
- 48. H. Rabeharindranto, S. Castano-Cerezo, T. Lautier, L. F. Garcia-Alles, C. Treitz, A. Tholey and G. Truan, *Metab Eng Commun*, 2019, **8**, e00086.
- 49. X. K. Zhang, D. N. Wang, J. Chen, Z. J. Liu, L. J. Wei and Q. Hua, *Biotechnol Lett*, 2020, **42**, 945-956.
- 50. M. Qi, B. Zhang, L. Jiang, S. Xu, C. Dong, Y. L. Du, Z. Zhou, L. Huang, Z. Xu and J. Lian, *Front Bioeng Biotechnol*, 2020, **8**, 613771.
- 51. Y. Yuan, E. Andersen and H. Zhao, *ACS Synth Biol*, 2016, **5**, 46-52.
- 52. Z. Cui, H. Zheng, J. Zhang, Z. Jiang, Z. Zhu, X. Liu, Q. Qi and J. Hou, *Appl Environ Microbiol*, 2021, **87**.
- 53. C. Ignea, M. Pontini, M. E. Maffei, A. M. Makris and S. C. Kampranis, *ACS Synth Biol*, 2014, **3**, 298-306.
- 54. C. Ignea, F. A. Trikka, A. K. Nikolaidis, P. Georgantea, E. Ioannou, S. Loupassaki, P. Kefalas, A. K. Kanellis, V. Roussis, A. M. Makris and S. C. Kampranis, *Metab Eng*, 2015, **27**, 65-75.
- 55. B. Peng, L. K. Nielsen, S. C. Kampranis and C. E. Vickers, *Metab Eng*, 2018, 47, 83-93.
- 56. C. Ignea, M. Pontini, M. S. Motawia, M. E. Maffei, A. M. Makris and S. C. Kampranis, *Nat Chem Biol*, 2018, **14**, 1090-1098.
- 57. Z. Yao, P. Zhou, B. Su, S. Su, L. Ye and H. Yu, ACS Synth Biol, 2018, 7, 2308-2316.
- 58. V. Forman, N. Bjerg-Jensen, J. D. Dyekjær, B. L. Møller and I. Pateraki, *Microb Cell Fact*, 2018, **17**, 181.
- 59. J. K. Michener, J. Nielsen and C. D. Smolke, *Proc Natl Acad Sci U S A*, 2012, **109**, 19504-19509.
- 60. C. Ignea, E. Ioannou, P. Georgantea, F. A. Trikka, A. Athanasakoglou, S. Loupassaki, V. Roussis, A. M. Makris and S. C. Kampranis, *Microb Cell Fact*, 2016, **15**, 46.