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List of Figures

Supplementary Figure 1. The cross-sectional scanning TEM (STEM) images of the same h-BN 
nanoflake in bright field (BF) mode and high-angle annular dark field (HAADF) mode. In BF 
image (left), the black lines represent h-BN. In HAADF mode, the white lines represent h-BN.
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Supplementary Figure 2. Statistical analysis of the thickness and size of the h-BN nanoflakes by 
AFM profiles from Figure 1c.
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Supplementary Figure 3. Top view TEM image of h-BN nanoflakes.
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Supplementary Figure 4. Raman spectra of the inkjet-printed h-BN thin film. 
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Supplementary Figure 5. Endurance test of Ag/h-BN/Ag memristor showing self-recovery.
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Supplementary Table 1: LPE BP based memristor

Ref TE/RS medium/BE Print method Endurance data points presented
1 Al/BP/ITO Drop-casting - -
2 Al/PMMA/BPQDs/PMMA/Al Sonication exfoliation 100 21
3 Al/BP:PS/Al Centrifuge - -

Supplementary Table 2: LPE GO based memristor

Ref TE/RS medium/BE Print method Endurance data points presented
4 Cu/GO/Pt Vacuum filtration 100 100
5 Al/GO-PVK/ITO Toluene-cast 10 9
6 Al/G-O film/Al Spin-casting 100 21
7 Al/GO/ITO Spin coating 100 50
8 Al/TPAPAM-GO/ITO Spin or blade coating 5 -
9 Al/GO/ITO Spin coating 100 50
10 Al/RGO/ITO Drop casting hundreds 8
11 Cu/GO/Pt Vacuum filtration - -
12 Pt/rGO–th/Pt Vacuum filtration 350 350
13 Al/FPA-rGO/ITO Spin coating 1000 -
14 Ag/GO/Ag Spin coating - -
15 Al/GO/ITO Spin coating 100 100
16 Al/GO/p-Si 

Al/GO/p-Ge
Spin coating 100

100
50
50

17 Pt/GO/ITO Spin coating 100 21
18 Al/rGO/Al Spin coating ~100 50
19 Ag/HfOx/LSG Laser-scribing 100 -
20 Ag/GO/ITO Spin coating - -
21 Al/CuO/GO/CuO/Al Spray-coating - -
22 Au/GO/ITO Spin coating 100 9
23 ITO/RGO/ITO Dip coating 105 -
24 Al/GO/Al Spin coating - -
25 Al/Au NPs-RGO-PVA/ITO Spin casting 50 -
26 Ag/GO/ITO Inkjet printing - -
27 ITO/GO/ITO/PES Spin coating - -
28 Al/Au NP inserted GO/ITO Spin coating 104 -
29 Ag/GO/rGO/SiO2/p-Si Spin coating 100 -
30 Au/GO/Au Drip - -
31 Au/GO/Al Spin coating 200 -
32 Ag/GO/rGO/Ag Spin coating 100 -
33 Ag/ZnO-rGO/FTO Dip coating - -
34 Metal/GO/Metal Spin coating 250 15
35 Pt/Ti/GO/Pt/Ti Spin coating 104 -
36 PEDOT:PSS/GO/PEDOT:PSS Spin coating 103 -
37 Pt/GO/ZnONR/ZnO/ITO Drop-casting 103 -
38 Au/GO/Au Dripping - -
39 Pt/brGO/Pt Spin coating - -
40 Yarns/RGO/Yarns Spin coating 100 -
41 Ag/N-GO QDs/Pt Drop-casting 50 -
42 Ag/RGO/ITO Drop-casting - -
43 Al/HGO/ITO Spin coating 100 -
44 Al/GO-TiO2/ITO Spin coating 60 -
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45 Pt/ZnO-G/Pt Spin coating - -
46 Ni/PMMA:GO/ITO Spin coating 300 -
47 Paint/GO/PET Spin coating 100 15
48 Al/GOAu/ITO Spin coating 100 -
49 LSMO-rGO - 103 -
50 Al/rGO-ZnO HC/PMMA/ITO Spin coating 103 -
51 Al/GO/Al/PES Spin coating 100 -
52 Al/GO/Au/GO/ITO Spin coating - 20

Supplementary Table 3: LPE MoS2 based memristor

Ref TE/RS medium/BE Print method Endurance data points presented
55 Al/MoS2-PVP/(rGO) Spin coating - -
56 rGO/MoS2/ITO Spin coating - -
57 Ag/MoOx/MoS2/Ag Inkjet, screen printing 104 14
58 Al/MoS2-MoOx/Al Spin coating 100 11
59 Au/PMMA/MoS2 

QDs/PMMA/FTO
Spin coating 650 -

60 Al/MoS2–UCNPs/ITO Spin coating 200 40
61 Ag/Gr-MoS2/Cu Hydrothermal process 500 -
62 Ag/MoS2/Ag aerosol-jet printing 120 25
63 Gr/MoS2 QDNS/Gr Spin coating 50 -
64 Pt/MoS2/Ti Spin coating 107 22

Reference 64 claims a high endurance 107 while only 22 data points are shown, which is not 
reliable. The correct characterization method of endurance measurement should be one data point 
per cycle, as explained in M. Lanza et al, Standards for the Characterization of Endurance in 
Resistive Switching Devices. ACS Nano 2021, 15, 11, 17214–17231.

Supplementary Table 4: LPE h-BN based memristor

Ref TE/RS medium/BE Print method Endurance data points presented
53 Ag/h-BN-PVOH/ITO EHDA printing 1500 33
54 Ag/ZnO/BNNSs/Pt Spin coating - -
This 
work

Ag/h-BN/Pt
Ag/h-BN/Ag

Inkjet printing
Inkjet printing

600,000
11,000

600,000
11,000
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