Supporting Information

Boosting Oxygen Evolution Electrocatalysis via CeO₂ Engineering on Fe₂N nanoparticles for rechargeable Zn-air batteries

Minghui Wang^a, Jianwei Ren^{b,*}, Hui Wang^a, Xuyun Wang^a, Rongfang Wang^{a,*}

^a College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao,
 266042, China

 ^b Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa
 *Corresponding author.

E-mail address: jren@uj.ac.za (J. Ren), rfwang@qust.edu.cn (R. Wang)

Electrochemical measurements

All oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) tests were performed in a three-electrode system. The ORR test was carried out in 0.1 M KOH solution, and a catalyst-modified platinum-carbon electrode (GCE), Ag/AgCl electrode and platinum wire were used as working electrode, reference electrode and counter electrode, respectively. The catalyst film was prepared as following: the catalyst is ultrasonically dispersed in a 0.25 wt.% Nafion/isopropanol solution with a volume ratio of 1:0.2. Sequentially, 8 µL of the dispersion droplet was applied to the electrode surface and dried naturally. For comparison purpose, a commercial Pt/C (20

wt.%, Johnson Matthey) catalyst electrode was also prepared in the same manner. The measured data is converted into the corresponding standard reversible hydrogen electrode potential (RHE) by the Nernst equation: $E_{RHE} = E_{Ag/AgCl} + 0.059 pH + 0.197 V_{.}$

OER tests were performed in 1.0 M KOH solution. The nickel foam loaded with 3 mg of the as-prepared catalyst was used as working electrode, the carbon rod was used as counter electrode, and Hg/HgO was used as reference electrode, respectively. All potentials are IR corrected. The measured data is also converted into the corresponding standard reversible hydrogen electrode potential by the following formula: $E_{RHE} = E_{Hg/HgO} + 0.059 \, pH + 0.098 \, V_{.}$

Zinc-air battery (ZAB) test: A Zab cell was assembled with the prepared sample as the cathode, zinc foil as the anode, and a mixture of 6 M KOH and 0.2 M $Zn(CH_3OO)_2$ as the electrolyte, respectively. Typically, 4 mg of catalyst, 3 µL of PTFE and 4 mg of conductive carbon black were added to 350 µL of isopropanol and the mixture was stirred to obtain a uniform slurry. The slurry was dried at 40 °C before rolling into sheets, which were pressed against nickel foam under a pressure of 20 MPa.

Fig. S1. SEM images of: (a) CeO_{2-x}/NFC and (e) Fe-NCs/NFC samples. TEM images of: (b, f) CeO_{2-x}/NFC and (c, g) Fe-NCs/NFC samples; XRD patterns of: (d) CeO_{2-x}/NFC and (h) Fe-NCs/NFC samples.

Fig. S2. XPS spectra of CeO_2 -Fe₂N/NFC₋₂ sample: (a) Survey spectra and (b) high-resolution C 1s.

Fig. S3. (a) LSV curves; (b) E_{onset} and $E_{1/2}$; (c) Tafel plots of CeO₂-Fe₂N/NFC₋₁, CeO₂-

Fe₂N/NFC₋₂ and CeO₂-Fe₂N/NFC₋₃ samples.

Fig. S4. (a) Tafel plots of NFC, Fe-NCs/NFC, CeO_{2-x}/NFC , CeO_2 -Fe₂N/NFC₋₂ and Pt/C samples. (b) The polarization curves at different rotation rates; (c) corresponding K-L plots of Pt/C sample; (d) electronic transfer number of CeO_2 -Fe₂N/NFC₋₂ and Pt/C samples. The 1st and 6000th ORR cycles of samples (e) CeO_2 -Fe₂N/NFC₋₂ and (f) Pt/C.

Fig. S5. (a) LSV curves; (b) overpotentials at 50 and 10 mA cm⁻²; (c) Tafel plots of CeO₂-Fe₂N/NFC₋₁, CeO₂-Fe₂N/NFC₋₂ and CeO₂-Fe₂N/NFC₋₃ samples.

Fig. S6. (a) Overpotentials at 50 and 10 mA cm⁻²; (b) EIS Nyquist plots at 1.54 V vs.

RHE; (c) fitting plots of the current density vs the san rate of five samples ($\Delta j = j_a - j_c$) of NFC, Fe-NCs/NFC, CeO_{2-x}/NFC, CeO₂-Fe₂N/NFC₋₂ and RuO₂ samples.

Fig. S7. The electrical double-layer capacitance (C_{dl}) of samples: (a) NFC; (b) Fe-

NCs/NFC; (c) CeO_{2-x}/NFC; (d) CeO₂-Fe₂N/NFC₋₂ and (e) RuO₂.

Fig. S8. LSV curves of 1^{st} and 6000^{th} cycles for OER: (a) CeO₂-Fe₂N/NFC₋₂ sample and (b) RuO₂ sample.

Fig. S9. The XRD patterns of the CeO_2 -Fe₂N/NFC₋₂ sample: (a) after ORR stability test; and (b) after OER stability test.

Fig. S10. The SEM images of the CeO_2 -Fe₂N/NFC₋₂ sample: (a) after ORR stability

test; and (b) after OER stability test.

Fig. S11. The high-resolution XPS spectra of the CeO₂-Fe₂N/NFC₋₂ sample after ORR

and OER stability tests: (a) N1s; (b) Fe 2p; and (c) Ce 3d.

Fig. S12. (a) The open circuit voltages; (b) charge/discharge polarization curves of CeO₂-Fe₂N/NFC₋₂ and Pt/C+RuO₂-based ZAB cells.

 Table S1. The atomic percentages (at%) of the samples determined from the XPS analysis.

Sample	С	Ο	Ν	Fe	Ce
Fe-NCs/NFC	93.95	3.46	2.26	0.33	0
CeO _{2-x} /NFC	88.07	9.12	2.76	0	0.05
CeO ₂ -Fe ₂ N/NFC ₋₂	85.19	11.26	3.11	0.39	0.04

Table S2. Conductivities (S/m) of the prepared samples at different voltages.

Voltages (mV)	Fe-NCs/NFC	CeO _{2-x} /NFC	CeO ₂ -Fe ₂ N/NFC ₋₂
0.3	536.2	182	235.9
0.5	188	119	134.6
0.8	74.7	65.9	72.3

	ORR OER		Oxygen electrode activity	
Catalysts	E _{1/2} (V vs. RHE)	$E_{j=10 mA cm^{-2}}$ (V vs. RHE)	$\triangle E = E_{j = 10 \text{ mA cm}^{-2}} - E_{1/}$ (V vs. RHE)	Reference s
CeO ₂ - Fe ₂ N/NFC ₋₂	0.87	1.49	0.62	This work
Co-CeO ₂ /C	0.75	1.61	0.86	1
3Co– LaMOH O _V @ NC	0.83	1.56	0.73	2
CeO ₂ @CoSe ₂ -NCs	0.76	1.55	0.79	3
CeO ₂ -FeNC-5	0.90	1.55	0.65	4
FeNi@N- CNT/NCS	0.84	1.59	0.75	5
FeCo–NC _{ps}	0.85	1.61	0.76	6
SA-Fe-Nx- MPCS	0.88			7
Fe-MNC	0.85	1.53	0.68	8
FeNC-CoS ₂	0.85	1.61	0.76	9
Fe-NSDC	0.84	1.65	0.81	10
Ce/Fe- NCNW	0.91			11
Fe-Me-Ni	0.84	1.54	0.70	12
Mn-RuO ₂	0.86	1.50	0.64	13

Table S3. The ORR/OER performance comparison of CeO_2 -Fe₂N/NFC₋₂ sample with various catalysts reported in literature.

Table S4. Summary of recently reported high-performance rechargeable Zn-air

batteries with various bi-functional electrocatalysts.

Catalysts	Peak power density (mW cm ⁻²)	charge/discharge voltage gap (V)	References
CeO ₂ -	133	0.68 @20 mA cm ⁻²	This work

Fe ₂ N/NFC ₋₂			
3Co			
LaMOH O _V @	110	0.98 @5 mA cm ⁻²	2
NC			
CeO ₂ @CoSe ₂ -	152	0.86 @5 m 1 am-?	3
NCs	133	0.80 (<i>W</i> ,5 IIIA CIII ²	2
CeO ₂ -FeNC-5	169	0.83 @10 mA cm ⁻²	4
FeNi@N-	102	$0.72 @ 10 m A om^{2}$	5
CNT/NCS	103	0.75 @10 IIIA CIII ²	, C
Fe-MNC	137		8
M-2	124	0.71 @20 mA cm ⁻²	14

References

- 1 Z. Liu, J. Wan, M. Li, Z. Shi, J. Liu and Y. Tang, Nanoscale., 2022, 14, 1997-2003.
- 2 J. Zhang, J. Chen, Y. Luo, Y. Chen, C. Zhang, Y. Luo, Y. Xue, H. Liu, G. Wang and R. Wang, *J. Energy Chem.*, 2021, **60**, 503-511.
- 3 Y. Huang, Y. Liu, Y. Deng, J. Zhang, B. He, J. Sun, Z. Yang, W. Zhou and L. Zhao, *J. Colloid Interface Sci.*, 2022, **625**, 839-849.
- 4 Y. Huang, Y. Zhang, J. Hao, Y. Wang, J. Yu, Y. Liu, Z. Tian, T. S. Chan, M. Liu, W. Li and J. Li, *J. Colloid Interface Sci.*, 2022, DOI: 10.1016/j.jcis.2022.09.066, 1067–1076.
- 5 J.-T. Ren, L. Chen, Y.-S. Wang, W.-W. Tian, L.-J. Gao and Z.-Y. Yuan, *ACS Sustain. Chem. Eng.*, 2019, **8**, 223-237.
- 6 J. Liu, T. He, Q. Wang, Z. Zhou, Y. Zhang, H. Wu, Q. Li, J. Zheng, Z. Sun, Y. Lei, J. Ma and Y. Zhang, J. Mater. Chem. A., 2019, 7, 12451-12456.
- 7 X. Fu, G. Jiang, G. Wen, R. Gao, S. Li, M. Li, J. Zhu, Y. Zheng, Z. Li, Y. Hu, L. Yang, Z. Bai, A. Yu and Z. Chen, *Appl. Catal. B.*, 2021, **293**, 120176-120184.
- 8 X. Luo, Z. Liu, Y. Ma, Y. Nan, Y. Gu, S. Li, Q. Zhou and J. Mo, J. Alloys Compd., 2021, 888, 161464-161472.
- 9 Y. Mi, W. Wang, Y. Hao, Y. Kang, S. Imhanria and Z. Lei, J. Taiwan Inst. Chem. Eng., 2021, 118, 334-341.
- 10 J. Zhang, M. Zhang, Y. Zeng, J. Chen, L. Qiu, H. Zhou, C. Sun, Y. Yu, C. Zhu and Z. Zhu, Small., 2019, 15, 1900307-1900317.
- 11 J.-C. Li, S. Maurya, Y. S. Kim, T. Li, L. Wang, Q. Shi, D. Liu, S. Feng, Y. Lin and M. Shao, *ACS Catal.*, 2020, **10**, 2452-2458.
- 12 Y. Tang, Y. Lei, G. Li, T. Fu, Y. Xiang, J. Sha, H. Yang, P. Yu, Y. Si and C. Guo, *J. Mater. Chem. A.*, 2022, **10**, 5305-5316.
- 13 C. Zhou, X. Chen, S. Liu, Y. Han, H. Meng, Q. Jiang, S. Zhao, F. Wei, J. Sun, T. Tan and R. Zhang, *J. Am. Chem. Soc.*, 2022, **144**, 2694-2704.
- 14 J. Ding, P. Wang, S. Ji, H. Wang, V. Linkov and R. Wang, *Electrochim. Acta.*, 2019, 296, 653-661.