
Supplementary Information

Integrating molybdenum into zinc vanadate enable $Zn_3V_2MoO_8$ as a high-capacity Zn-supplied cathode for Zn-metal free aqueous batteries

Gang Wang,^a Quan Kuang,^{*,a} Pan Jiang,^a Qinghua Fan,^a Youzhong Dong,^a Yanming Zhao ^{a,b}

Figure S1. XPS spectra of (a) Zn 2p, (b) V 2p, (c) Mo 3d, and (d) O 1s regions of Zn₃V₂MoO₈ cathodes at pristine, full-charge and full-discharge states.

^a School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, P. R. China

^b South China Institute of Collaborative Innovation, Dongguan, 523808, P. R. China

^{*}Corresponding author. E-mail: sckq@scut.edu.cn

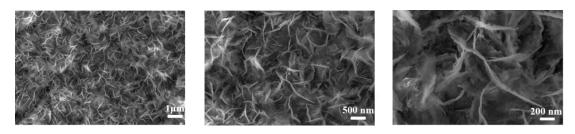


Figure S2. SEM images of $Zn_3V_2MoO_8$ cathode at the 2nd full discharge at different magnifications.

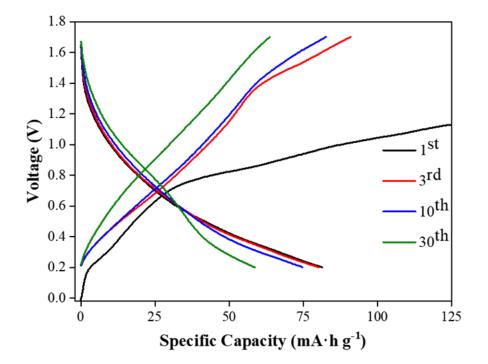


Figure S3. Representative galvanostatic charge-discharge curves of $Zn_3V_2MoO_8||brass\ battery\ at\ 100\ mA\ g^{\text{-}1}.$

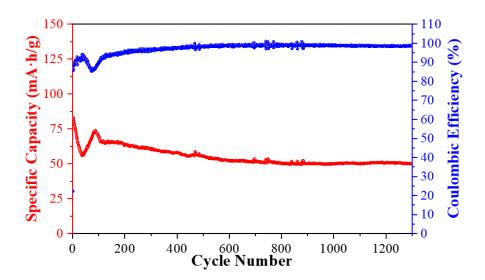


Figure S4. Cyclic performance of $Zn_3V_2MoO_8||$ brass battery for the initial 1300 cycles at 100 mA g⁻¹.