Prediction of 2D IV-V semiconductors: Flexible monolayers with

tunable bandgap and strong optical absorption as water-splitting

photocatalysts

Luqi Liu¹, Xuxin Kang¹, Shan Gao^{1,2}, Xiangmei Duan^{1,2*}

¹ School of Physical Science and Technology, Ningbo University, Ningbo, P. R. China E-mail: <u>duanxiangmei@nbu.edu.cn</u>

² Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, P. R. China

Fig. S1 The phonon spectra (a-c), Energy fluctuations in AIMD simulations at 300 K (d-f), HSE06 band structures and the corresponding partial density of states (g-i) of SiSb₂, GeSb₂ and SnSb₂ monolayers. The insets in (d-f) are the snapshots taken from the end of each simulation.

Table S1. Elastic constants (in Jm⁻²), Young's modulus (Y, in Jm⁻²), and Poisson's ratio (v) of XY₂ sheets. The reported data for pentagonal CP₂, CAs₂, CSb₂ and GeP₂ are included for comparison.

XY ₂	$C_{11} = C_{22}$	C_{12}	C_{66}	Y	V
SiSb ₂	30.97	11.45	21.20	42.42	0.37
GeAs ₂	38.51	10.19	23.26	35.82	0.26
GeSb ₂	27.11	9.63	18.13	36.50	0.36
SnP ₂	37.48	7.60	20.14	35.94	0.20
SnAs ₂	29.99	8.31	16.84	27.69	0.28
$SnSb_2$	22.13	7.56	13.20	19.54	0.34
$CP_{2}^{[5]}$	84.11	44.72	79.18	60.33	0.53
$CAs_2^{[5]}$	63.77	41.07	61.46	37.32	0.64
$CSb_2^{[5]}$	40.78	36.20	44.94	8.65	0.89
$GeP_{2}^{[6]}$	47.41	9.42	16.88	45.53	0.20

Fig. S2 The partial density of states (PDOS) of GeAs₂ (a), SnP₂ (b), and SnAs₂ (c).

Fig. S3 The spatial charge density of VBM and CBM of the pentagonal GeAs₂ (a), SnP₂ (b), and SnAs₂ (c). The isolevels are set to be 0.004 $e^{A^{-3}}$.

Fig. S4 Energy fluctuations for strained monolayers $GeAs_2$ (a), SnP_2 (b), and $SnAs_2$ (c) by MD simulations at 300 K. The insets are the snapshots taken from the end of each simulation.

Fig. S5 (a-j) Band structure of GeAs₂ under different biaxial strains.

Fig. S6 (a-j) Band structure of SnP₂ under different biaxial strains.

Fig. S7 (a-j) Band structure of $SnAs_2$ under different biaxial strains.

References

- 1 S. Sun, F. Meng, Y. Xu, J. He, Y. Ni and H. Wang, J. Mater. Chem. A, 2019, 7, 7791– 7799.
- 2 F. Shojaei, J. R. Hahn and H. S. Kang, J. Mater. Chem. A, 2017, 5, 22146–22155.