Supporting Information

Periodic trends in the structural, electronic and

transport properties of electrenes

Mohammad Rafiee Diznab,[†] Erin R. Johnson,^{*,†,‡} and Jesse Maassen^{*,†}

†Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada

‡Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada

E-mail: erin.johnson@dal.ca; jmaassen@dal.ca

1 Landauer transport formalism

1.1 Mathematical expressions

The electrical conductivity within a Landauer transport framework¹ can be defined as

$$\sigma = \left(\frac{2q^2}{h}\right) I_0\,,\tag{1}$$

where σ is the electrical conductivity, q is carrier charge, h is Planck's constant and the quantity I_0 is written as

$$I_0 = \frac{h}{2} \int_{-\infty}^{+\infty} \Sigma(E) \left(-\frac{\partial f_0}{\partial E}\right) dE,$$
(2)

where $\Sigma(E)$ is the transport distribution as a function of energy, E, μ is the Fermi level, k_B is Boltzmann's constant, T is temperature, and f_0 is the Fermi-Dirac distribution. The transport distribution function can be expressed as

$$\Sigma(E) = \frac{1}{\Omega} \sum_{k,s,n} \nu_x^2(k) \,\tau(k) \,\delta[E - \epsilon(k)],^1 \tag{3}$$

where the sum runs over all k points in the Brillouin zone, spin states s, and band index n. Here, Ω is the sample volume, $\epsilon(k)$ is the electronic dispersion (i.e. band structure), $\tau(k)$ is the scattering time and $\nu_x = 1\hbar (\partial \epsilon \partial k_x)$ is the group velocity along the direction of transport (here assumed to be the \hat{x} direction). Since $\Sigma(E)$ contains all material properties, it is considered the central quantity in these calculations.

Next, we re-arrange $\Sigma(E)$ to express it as the product of two physically-intuitive quantities, the distribution-of-modes (M(E)) and mean-free-path for backscattering $(\lambda(E))$. The resulting $\Sigma(E)$ is

$$\Sigma(E) = \frac{2}{h} M(E) \lambda(E).$$
(4)

From a physical perspective, the distribution-of-modes (or DOM) represents the number of conducting channels available for transport, and is defined as

$$M(E) = \frac{h}{4\Omega} \sum_{k,s,n} |\nu_x(k)| \,\delta[E - \epsilon(k)].$$
(5)

The other physically descriptive quantity is the mean-free-path for backscattering. $\lambda(E)$, which quantifies the average distance along the transport direction before the ν_x component of electrons changes sign due to scattering, and is defined as

$$\lambda(E) = 2 \frac{\sum_{k,s,n} \nu_x^2(k) \tau(k) \,\delta[E - \epsilon(k)]}{\sum_{k,s,n} |\nu_x(k)| \,\delta[E - \epsilon(k)]}.$$
(6)

Since the relaxation time is assumed to be a function of energy in this work, we can write

¹Note that the explicit s and n dependence of the quantities in Eq. (3) is omitted for clarity.

the $\lambda(E)$ as a product of the average velocity of carriers, V_{λ} , and the relaxation time, $\tau(E)$:

$$\lambda(E) = V_{\lambda}(E) \tau(E), \tag{7}$$

where V_{λ} is defined as

$$V_{\lambda}(E) = 2 \frac{\sum_{k,s,n} \nu_x^2(k) \,\delta[E - \epsilon(k)]}{\sum_{k,s,n} |\nu_x(k)| \,\delta[E - \epsilon(k)]}.$$
(8)

In this case, the transport distribution takes on the following form

$$\Sigma(E) = \frac{2}{h} M(E) V_{\lambda}(E) \tau(E).$$
(9)

The scattering rates is assumed to be proportional to the DOS, such that $\tau(E) = k_0 / D(E)$, so the transport distribution can be expressed as

$$\Sigma_{DOS}(E) = \frac{2}{h} M(E) V_{\lambda}(E) \frac{k_0}{D(E)}, \qquad (10)$$

where k_0 is an adjustable parameter.

1.2 Density of states, average velocity, and distribution of modes

The calculated electronic density of states, D(E), averaged carrier velocities, $\langle \nu_x^+ \rangle$, and distribution of modes, M(E), for all monolayer and bilayer electrones can be found in Fig. S1-S4. The plotted average velocity is defined as

$$\langle \nu_x^+ \rangle = \frac{\sum_{k,s,n} |\nu_x(k)| \, \delta \left[E - \epsilon \left(k \right) \right]}{\sum_{k,s,n} \delta \left[E - \epsilon \left(k \right) \right]}.$$
(11)

Fig. S1: Calculated DOS (left), averaged velocity (center), and DOM (right) for monolayer Ca_2N , Sr_2N and Sr_2P .

Fig. S 2: Calculated DOS (left), averaged velocity (center), and DOM (right) for monolayer Ba_2N , Ba_2P , Ba_2As and Ba_2Sb .

Fig. S 3: Calculated DOS (left), averaged velocity (center), and DOM (right) for bilayer Ca_2N , Sr_2N and Sr_2P .

Fig. S 4: Calculated DOS (left), averaged velocity (center), and DOM (right) for bilayer Ba_2N , Ba_2P , Ba_2As and Ba_2Sb .

2 Transport properties

2.1 Rigorous electron-phonon scattering in monolayer Ca_2N

The value of the proportionality constant, k_0 , was determined by matching the Landauer conductivity of monolayer Ca₂N to that obtained using Perturbo² (with **k**- and **q**- grids of $200 \times 200 \times 1$), which captures the detailed electron-phonon scattering rates. The fitted value of $k_0 = 9.13 \times 10^4$ eV⁻¹ m⁻² s was obtained for monolayer Ca₂N.

Fig. S 5: Electron-phonon scattering rates of Ca_2N monolayers using fine $200 \times 200 \times 1$ and $80 \times 80 \times 1$ **k**-point and **q**-point grids. The dashed line shows the energy-dependent DOS scattering rates.

Fig. S6: Computed transport distribution function (TDF) of monolayer Ca_2N obtained from rigorous electron-phonon calculations. An abrupt drop in the TDF is observed near -0.4 eV, which corresponds to an increase in the DOS arising from the band edge of the upper surface band.

3 Lattice parameters, exfoliation energies, and work

functions without dispersion correction

Table S 1: Calculated monolayer (a_m) and bilayer (a_b) lattice constants and interlayer distance of bilayer structures (c_b) without the D3(BJ) dispersion correction.

	a_m (Å)				a_b (Å)				c_b (Å)		
	Ca	Sr	Ba		Ca	Sr	Ba		Ca	Sr	Ba
Ν	3.61	3.86	4.01	N	3.61	3.86	4.03	Ν	3.73	4.08	4.83
Р	-	4.45	4.66	P	-	4.69	4.65	Р	-	3.99	4.45
As	-	-	4.76	As	-	-	4.77	As	-	-	4.40
Sb	-	-	5.02	Sb	-	-	5.03	Sb	-	-	4.25

Table S 2: Exfoliation energies of electrenes without the D3(BJ) dispersion correction.

	E_{exf}	o (me	$eV/Å^2$)
	Ca	Sr	Ba
Ν	70	54	38
Р	-	42	31
As	-	-	30
Sb	-	-	27

	$\Phi_{\rm m}^{\rm mo}$	^{nolayer} ((eV)		$\Phi_{\rm m}^{\rm bilayer}$ (eV)				
	Ca	Sr	Ba		Ca	Sr	Ba		
Ν	3.58	3.35	3.01	Ν	3.40	3.15	3.00		
Р	-	2.98	2.68	Р	-	2.78	2.66		
As	-	-	2.62	As	-	-	2.59		
Sb	-	-	2.48	Sb	-	-	2.40		

Table S3: Monolayer and bilayer work functions ($\Phi_m^{\text{monolayer}}$ and Φ_m^{bilayer}) without the D3(BJ) dispersion correction.

4 Electron localization function (ELF)

Fig. S7: Electron localization function (ELF) of monolayer electrenes. The ELF values are mapped onto a range between 0 and 1, where 1 corresponds to perfect localization and 0.5 is comparable to a uniform electron gas. The extent of electron localization at the surfaces is increased, compared to the central region of the atomic layer, for lighter elements.

Fig. S8: Electron localization function (ELF) of bilayer electrenes. The colour bar indicates the range of values between 0 and 1. Similar to the monolayers, the surface states are more localized for lighter elements.

5 Crystal orbital Hamilton population (COHP)

	$-$ IpCOHP $^{Total}(\times 10^{-1})$				$- \texttt{IpCOHP}^{s-s} \left(imes 10^{-1} ight)$				-IpCOHP $^{s-p_z}$ (×10 ⁻¹)		
	Ca	Sr	Ba		Ca	Sr	Ba		Ca	Sr	Ba
N	3.75	3.32	2.56	Ν	1.09	0.94	0.95	Ν	0.64	0.43	0.14
Р	-	3.50	2.95	Р	-	0.82	0.91	Р	-	0.66	0.33
As	-	-	3.02	As	-	-	0.84	As	-	-	0.37
Sb	-	-	3.10	Sb	-	-	0.80	Sb	-	-	0.42

Table S 4: Integrated crystal orbital Hamilton population (IpCOHP) for monolayer electrenes.

Fig. S 9: Orbital-wise COHP plots for the monolayer electrenes.

6 Bader charges

Table S 5: Calculated Bader charges of monolayer electrides. The left and right panels show the charges for the alkaline earth metals and the pnictogens, respectively.

	Q	$P_{\mathrm{Bader}}^{\mathrm{Metal}}(\epsilon)$	e)		$Q_{\mathrm{Bader}}^{\mathrm{Pnictogen}}\left(e ight)$			
	Ca	Sr	Ba		Ca	Sr	Ba	
Ν	1.07	1.00	0.87	Ν	2.14	2.00	1.75	
Р	-	1.10	0.94	Р	-	2.21	1.89	
As	-	-	0.94	As	-	-	1.88	
Sb	-	-	0.96	Sb	-	-	1.93	

7 Convergence tests

Fig. S10: Change in the total energy with respect to increasing cutoff energy for all studied monolayers.

Fig.S 11: Change in the total energy with respect to increasing \mathbf{k} -point density for all studied monolayers.

Fig. S 12: Change in the total energy with respect to increasing vacuum thickness for all studied monolayers.

8 Band structure of Ca_2N with experimental lattice constant

Fig. S13: Electronic structure of monolayer Ca_2N with the experimental lattice constant³ of 3.62 Å and the DFT-calculated lattice constant of 3.58 Å.

9 Phonon dispersion of electrenes

Fig. S 14: Phonon dispersion of monolayer electrenes. No negative phonon energies are observed, indicating the dynamical stability of these materials. Calculations were performed using DFPT, a q-grid of $8\times8\times1$ for Ca₂N and Sr₂N, $10\times10\times1$ for Ba₂N and $5\times5\times1$ for the rest of the materials. In all cases, a convergence threshold of 10^{-20} was used for self-consistency calculations.

10 References

- Rudderham, C.; Maassen, J. Ab initio thermoelectric calculations of ring-shaped bands in two-dimensional Bi₂Te₃, Bi₂Se₃, and Sb₂Te₃: Comparison of scattering approximations. *Physical Review B* 2021, 103, 165406.
- (2) Zhou, J.-J.; Park, J.; Lu, I.-T.; Maliyov, I.; Tong, X.; Bernardi, M. Perturbo: A software package for ab initio electron-phonon interactions, charge transport and ultrafast dynamics. *Computer Physics Communications* **2021**, *264*, 107970.
- (3) Druffel, D. L.; Kuntz, K. L.; Woomer, A. H.; Alcorn, F. M.; Hu, J.; Donley, C. L.; Warren, S. C. Experimental Demonstration of an Electride as a 2D Material. *Journal of the American Chemical Society* **2016**, *138*, 16089–16094.