Supplementary Material Superconductivity in functionalized niobium-carbide MXenes

Cem Sevik

E-mail: cem.sevik@uantwerpen.be Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium Department of Mechanical Engineering, Faculty of Engineering, Eskisehir Technical University, 26555 Eskisehir, Turkey

Jonas Bekaert

E-mail: jonas.bekaert@uantwerpen.be Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Milorad V. Milošević

E-mail: milorad.milosevic@uantwerpen.be Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Bulk Nb₂CCl₂ structures with *P6₃mmc* and *P-3m1* symmetries

Figure S1: (a) Schematic representation of the periodic unit-cell of the Nb₂CCl₂ crystals with space group symmetries (a) $P6_{3}mmc$ and (b) P-3m1. The calculated phonon dispersion along with phonon density of states, and electronic band structures of Nb₂CCl₂ crystals with space group symmetries (c) $P6_{3}mmc$ and (d) P-3m1.

Exfoliation energies (E_x)

$E_{\rm x} = (E_{\rm Bulk} - n^* E_{\rm 2D})/N$ $E_{\rm Bulk} =$ Total energy of the bulk structure $E_{\rm 2D} =$ Total energy of the single layer n = Number of layers in the bulk unit cell N = Number of atoms in the unit cell of the bulk structure

Note: Total energies were obtained using the PBE functional, without the inclusion of vdW interactions.

Materials	E _x (meV/Atom)
Nb ₂ CS ₂	-1.08
Nb ₂ CCl ₂	-1.03
$Nb_3C_2S_2$	-0.53
Nb ₃ C ₂ Cl ₂	-0.52

Figure S2: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated *e-ph* coupling constant (λ). The size of red circles is scaled with 1/100 for a better view. Here the red, grey, and green lines correspond to the Nb, Cl, and S atoms, respectively.

The Fermi level dependent superconducting properties of monolayer Nb₂CCl₂

Figure S3: (a) Eliashberg function and integrated *e-ph* coupling constant for Fermi level shifted by gating to 0, - 70, and -110 meV. (b) The calculated superconducting transition temperature T_c , along with electronic density of states at E_F .

Bulk-layered Nb₂CS₂

The calculated nesting function

The change in Eliashberg function and integrated e-ph coupling constant (λ) with applied strain

Figure S5: The calculated Eliashberg function and integrated e-ph coupling constant (λ) for different strain values (tensile (+) and compressive (-)). Here, $\mu^* = 0.13$ and *tsmear* = 0.005 Ha.

Bulk Nb₂CSe₂

Figure S6: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated *e-ph* coupling constant (λ). The size of red circles is scaled with 1/100 for a better view. Here the red, grey and green lines correspond to the Nb, Se, and C atoms, respectively.

Figure S7: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, and (c) Eliashberg function and integrated *e-ph* coupling constant (λ). The size of red circles is scaled with 1/100 for a better view. Here the blue, and red lines correspond to the Nb, and C atoms.

Bulk Nb₃C₂Cl₂ Space group *P-3m1*

Figure S8: (a) Schematic representation of the periodic unit-cell of the considered crystal. (b) The calculated phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states.

Monolayer Nb₃C₂S₂

Figure S9: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated *e-ph* coupling constant (λ). The size of red circles is scaled with 1/10 for a better view. Here the red, grey and green lines correspond to the Nb, S, and C atoms, respectively.

Bulk Nb₂CCl₂

The calculated electronic density of states and carrier doping level

The calculated electronic density of states and carrier doping level

The change in Eliashberg function and integrated e-ph coupling constant (λ) with tensile strain

Monolayer Nb₂CCl₂

The change in phonon dispersion with tensile strain

Monolayer Nb₂CS₂

structure, (d) Eliashberg function and integrated *e-ph* coupling constant (λ). The size of red circles is scaled with 1/10 for a better view. Here the red, grey, and green lines correspond to the Nb, S, and C atoms, respectively.

The change in band structure with applied strain

The change in phonon dispersion with applied strain

The calculated nesting function

