Supplementary Material Superconductivity in functionalized niobium-carbide MXenes

Cem Sevik

E-mail: cem.sevik@uantwerpen.be Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium Department of Mechanical Engineering, Faculty of Engineering, Eskisehir Technical University, 26555 Eskisehir, Turkey

Jonas Bekaert

E-mail: jonas.bekaert@uantwerpen.be Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Milorad V. Milošević

E-mail: milorad.milosevic@uantwerpen.be Department of Physics & NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

Bulk Nb2CCl2 structures with *P63mmc* **and** *P-3m1* **symmetries**

Figure S1: (a) Schematic representation of the periodic unit-cell of the Nb₂CCl₂ crystals with space group symmetries (a) *P63mmc* and (b) *P-3m1*. The calculated phonon dispersion along with phonon density of states, and electronic band structures of Nb2CCl2 crystals with space group symmetries (c) *P63mmc* and (d) *P-3m1*.

Exfoliation energies (*E***x)**

$E_x = (E_{Bulk} - n * E_{2D})/N$

 E_{Bulk} = Total energy of the bulk structure E_{2D} = Total energy of the single layer $n =$ Number of layers in the bulk unit cell $N =$ Number of atoms in the unit cell of the bulk structure

Note: Total energies were obtained using the PBE functional, without the inclusion of vdW interactions.

phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated e -ph coupling constant (λ) . The size of red circles is scaled with $1/100$ for a better view. Here the red, grey, and green lines correspond to the Nb, Cl, and S atoms, respectively.

Monolayer Nb₂CCl₂

The Fermi level dependent superconducting properties of monolayer Nb2CCl2

Figure S3: (a) Eliashberg function and integrated *e-ph* coupling constant for Fermi level shifted by gating to 0, - 70, and -110 meV. (b) The calculated superconducting transition temperature *T*c, along with electronic density of states at *E*F.

Bulk-layered Nb₂CS₂

The calculated nesting function

Monolayer Nb₂CS₂

*The change in Eliashberg function and integrated e-ph coupling constant (*l*) with applied strain*

Figure S5: The calculated Eliashberg function and integrated e-ph coupling constant (λ) for different strain values (tensile $(+)$ and compressive $(-)$). Here, $\mu^* = 0.13$ and $tsmear = 0.005$ Ha.

Bulk Nb₂CSe₂

phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated $e-ph$ coupling constant (λ) . The size of red circles is scaled with $1/100$ for a better view. Here the red, grey and green lines correspond to the Nb, Se, and C atoms, respectively.

Monolayer Nb₃C₂

Figure S7: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, and (c) Eliashberg function and integrated e -ph coupling constant (λ) . The size of red circles is scaled with $1/100$ for a better view. Here the blue, and red lines correspond to the Nb, and C atoms.

Figure S8: (a) Schematic representation of the periodic unit-cell of the considered crystal. (b) The calculated phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states.

Monolayer Nb₃C₂S₂

Figure S9: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, (c) electronic band structure, and (d) Eliashberg function and integrated e -ph coupling constant (λ) . The size of red circles is scaled with $1/10$ for a better view. Here the red, grey and green lines correspond to the Nb, S, and C atoms, respectively.

Bulk Nb2CCl2

The calculated electronic density of states and carrier doping level

Monolayer Nb₂CCl₂

The calculated electronic density of states and carrier doping level

The change in band structure with tensile strain

Monolayer Nb₂CCl₂

*The change in Eliashberg function and integrated e-ph coupling constant (*l*) with tensile strain*

Monolayer Nb₂CCl₂

The change in phonon dispersion with tensile strain

Figure S15: (a) Schematic representation of the periodic unit-cell of the considered crystal. The calculated (b) phonon dispersion along with *e-ph* coupling (size of red circles) and phonon density of states, (c) electronic band structure, (d) Eliashberg function and integrated *e-ph* coupling constant (λ) . The size of red circles is scaled with 1/10 for a better view. Here the red, grey, and green lines correspond to the Nb, S, and C atoms, respectively.

Monolayer Nb₂CS₂

The change in band structure with applied strain

The change in phonon dispersion with applied strain

Monolayer Nb₂CS₂

The calculated nesting function

