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(e) h-GaN
D

08 FT 0.8 DFT-HIPHIVE
©- Mode 1
Mode 2
Mode 3
0.6 0.6
- Mode 4
o e V- Mode 5
o 5] ° ~4 Mode 6
0.4 0.4
%060

0.0 ;
X 7200 400 600 800 200 400 600 800
< GAP GAP-HIPHIVE

0.8 0.8

0.6 0.6

e o)
% )
0.4 S0 0.4 ©
©-—0 o0 o o
0.2 0.2 LGS,

0.0
200

400

600

0.0
800 200

400
Temperature (K)

600 800

Figure S1: Normalized contribution of acoustic and optical phonon branches to the thermal conductivity as a
function of temperature of all considered materials for DFT, GAP, DFT-HIPHIVE and GAP-HIPHIVE.
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(c) h-BN
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Figure S2: Relaxation time of phonon modes of all considered materials as a function of frequency for all
phonon modes at T=300K for DFT, GAP, DFT-HIPHIVE, and GAP-HIPHIVE.
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Figure S3: Grineisen parameters as a function of the frequency of all considered materials.
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(e) h-GaN
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Figure S4: The comparison of forces on atoms between obtained by DFT and GAP
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Figure S5: The comparison of energies between obtained by DFT and GAP
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Figure S6: The comparison of the resulting interatomic forces due to the 4™ order displacements, obtained by

DFT and GAP.
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Figure S7: The comparison of forces on atoms between obtained by DFT (target) and HIPHIVE (predicted)
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Figure S8: Variation of the system’s total energy versus the relative difference of the cross-sectional area of
the unit cell for all considered materials.
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Figure S9: Time evolution of temperature fluctuation in the MD simulations at T = 300 K for all the
considered materials.
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Figure S10: Velocity autocorrelation functions for all considered materials.
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Table S1: Hyperparameters of all considered materials for the training of GAP.

Gr Si h-BN h-AIN h-GaN
SOAP SOAP SOAP SOAP SOAP
|_max 10 I_max 12 |_max 6 |_max 8 |_max 6
n_max 8 n_max 10 n_max 6 n_max 8 n_max 8
cutoff 5.2 cutoff 7.2 cutoff 6 cutoff 5.2 cutoff 7.2
sigma 0.4 sigma 0.5 sigma 0.4 sigma 0.5 sigma 0.4
zeta 4 zeta 4 zeta 2 zeta 4 zeta 2
n_sparse 1500 n_sparse 2000 n_sparse 1000 n_sparse 1000 n_sparse 1500
delta 0.2 delta 0.3 delta 0.2 delta 0.2 delta 0.2
# of # of # of # of # of 1500
Training data | 1500 | Training data | 2500 | Training data | 1500 | Training data | 2000 | Training data

Table S2: Lattice thermal conductivity values and lattice constants for all considered materials.

Graphene
Thermal Conductivity Lattice Constants
(WmK™) (A)
DFT 3344.55 2.468
GAP 3469.88 2.468
DFT-HIPHIVE 3191.87
GAP-HIPHIVE 3323.15
Silicene
Thermal Conductivity Lattice Constants
(WmK-) (A)
DFT 33.87 3.868
GAP 34.76 3.872
DFT-HIPHIVE 33.96
GAP-HIPHIVE 35.22
h-BN
Thermal Conductivity Lattice Constant
(WmK-) (A)
DFT 914.82 2.512
GAP 933.96 2.514
DFT-HIPHIVE 913.33
GAP-HIPHIVE 872.84
h-AIN
Thermal Conductivity Lattice Constants
(WmK™1) (A)
DFT 110.17 3.126
GAP 117.81 3.127




DFT-HIPHIVE 108.37
GAP-HIPHIVE 113.35
h-GaN
Thermal Conductivity Lattice Constants
(WmK) (A)

DFT 44.95 3.255

GAP 44.65 3.256
DFT-HIPHIVE 43.41
GAP-HIPHIVE 42.05




