Supporting Information

Quasi-Solid Polymer Electrolyte Initiated by Two-Dimensional Functional Nanosheets for

Stable Lithium Metal Batteries

Ying Zhang ^{a, 1}, Jiawen Huang ^{a, 1}, Guanyao Wang ^a, Yuhai Dou ^c, Ding Yuan ^b, Liangxu Lin ^d, Kuan Wu^{*}, ^a, Hua Kun Liu ^{b, c}, Shi-Xue Dou ^{b, c}, and Chao Wu^{*}, ^{a, b}

Zhang Y., Huang, J., Dr. Wu, K., A/Prof. Wang, G., and Prof. Wu C.

^aSchool of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China. E-mail: <u>wkingzzz@shu.edu.cn; chaowu@uow.edu.au.</u>

Dr. Yuan D., Prof. Liu H., Prof. Dou S. and Prof. Wu C.

^bInstitute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, NSW 2522, Australia.

Prof. Dou Y., Prof, Liu H., and Prof. Dou S.

^cInstitute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China

Prof. Liangxu Lin

^dStrait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350017, China ¹These authors contributed equally to this work.

Fig. S1. X-ray powder diffraction (XRD) patterns of K₃Sb₃P₂O_{14.}

Fig. S2. AFM imaging of $Sb_3P_2O_{14}^{3-}$ nanosheets with a corresponding height profile (inset).

Fig. S3. The thermogravimetric curves of a) GPE and b) LE.

Fig. S4. X-ray powder diffraction (XRD) patterns of poly-DOL.

Fig. S5. Gel Permeation Chromatography (GPC) of GPE.

Fig. S6. The ionic conductivity of a) GPE; b) 0.1 wt% $H_3Sb_3P_2O_{14}$ &1 M LiTFSI in DOL; c) 0.3 wt% $H_3Sb_3P_2O_{14}$ &1 M LiTFSI in DOL&EC&FEC d) 0.3 M LiPF₆+0.7 M LiTFSI in DOL&EC&FEC.

Fig. S7. Electrochemical impedance spectroscopy (EIS) curves of GPE-Li and LE-Li symmetric cells.

Fig. S8. CEs for the 0.3 M LiPF₆+0.7 M LiTFSI in DOL&EC&FEC and 0.3 wt% $H_3Sb_3P_2O_{14}$ &1 M LiTFSI in DOL&EC&FEC at a 1 mA cm⁻² and 1 mA h cm⁻².

Fig. S9. Long-term cycling of symmetrical Li cells for the 0.3 M LiPF₆+0.7 M LiTFSI in DOL&EC&FEC and 0.3 wt% $H_3Sb_3P_2O_{14}$ &1 M LiTFSI in DOL&EC&FEC at a 1 mA cm⁻² and 1 mA h cm⁻².

Fig. S10. a) Electrochemical impedance spectroscopy and b) corresponding magnified view for Li||LE||Li cell after different plating/stripping cycles.

Fig. S11. a) Electrochemical impedance spectroscopy and b) corresponding magnified view for Li||GPE||Li cell after different plating/stripping cycles.

Fig. S12. a) SEM image and b) magnified SEM image of LiFePO₄ powder.

Fig. S13. The rate performance of $Li \| LiFePO_4$ full cells.

Fig. S14. Electrochemical impedance spectroscopy (EIS) of Li||LiFePO₄ full cells a) before and b) after 100 cycles at 1 C.

Fig. S15. The surface SEM images and corresponding mapping images for a-c) LiFePO₄ cathode and d-f) Li anode in the GPE system after 100 cycles at 1 C.

Fig. S16. The surface SEM images of a) LiFePO₄ cathode and b) Li anode in the LE system after 100 cycles at 1 C.

Initiator	Electrolyte	Current density (mA cm ⁻²)	Capacity (mAh cm ⁻²)	Coulombic efficiency (%)	Cycle number	Reference
LiPF ₆	2 M LiPF ₆ + 1 M LiTFSI / PDOL +DME (1:1 , v/v)	1	1	~90	100	1
LiPF ₆	1 M LiPF ₆ +EC/DOL/	1	\sim	/	100	2
LiPF ₆	1 M LiTFSI+ LiPF ₆ in DOL/FEC/MP	0.1	0.2	\sim 94	200	3
TB	2 M LiTFSI+ 3wt%TB in DOL	0.5	0.5	~86.2	200	4
Al(OTf) ₃	0.5 mM Al(OTf) ₃ + 2 m LiTFSI/DOL	1	1	\sim 98	300	5
Sn(OTf) ₂	2 mM Sn(OTf) ₂ +2M in LiTFSI/DOL	1	1	~98	120	6
H ₃ Sb ₃ P ₂ O ₁₄	1 M LiTFSI+0.1wt%	0.5	0.5	~94.2	200	This
	H ₃ Sb ₃ P ₂ O ₁₄ in DOL/EC/FEC	1	1	~94.3	100	- work

 Table S1. The comparison of coulombic efficiency of various poly-DOL electrolytes.

Initiator	Electrolyte	Current density (mA cm ⁻²)	Capacity (mAh cm ⁻²)	Voltage hysteresis (mV)	Life (h)	Reference
LiPF ₆	2 M LiPF ₆ + 1 M LiTFSI + DOL + DME (1:1 , v/v)	1	1	\sim 50	400	1
LiPF ₆	2 M LiTFSI + 0.3 M LiDFOB/DOL+SN	0.5	0.5	~85	700	7
LiPF ₆	1 M LiTFSI +LiPF ₆ (1 wt %) +DADS (1 wt %)/DOL	1	1	/	500	8
LiPF ₆	1 M LiTFSI+1 M LiPF ₆ in DME/DOL	0.5	1	$\sim \! 100$	1200	9
LiPF ₆	1 M LiTFSI+ LiPF ₆ in DOL/FEC/MP	1	1	/	400	3
LiPF ₆	2.5 M LiPF6 + 1 M LiTFSI in DOL	1	1	/	450	10
nano Al ₂ O ₃	1 M LiTFSI+4%wt% Al ₂ O ₃ in DME/DOL	1	1	~44	1000	11
LiBF_4	2.0 wt% TTE+1.0 M LiTFSI+ 0.2 M LiBF ₄ in DOL	1	1	\sim 70	1000	12
ZnCl ₂	1.0 M LiTFSI in DOL and DME $(1:1 \text{ v/v}) + 5 \text{ wt\% LiNO}_3$	1	1	/	660	13
Al(OTf) ₃	0.5 mM Al(OTf) ₃ + 2 m LiTFSI/DOL	1	1	/	200	5
Al(OTf) ₃	0.4 mM Al(OTf) ₃ + 2 m LiTFSI/DOL	0.25	0.5	/	800	14
Sc(OTf) ₃	2 M LiTFSI + 7 mM Sc(OTf) ₃ in DOL/EC/EMC	0.5	0.5	~47	500	15
Sn(OTf) ₂	2 mM Sn(OTf) ₂ +2M in LiTFSI/DOL	1	1	/	200	6
H ₃ Sb ₃ P ₂ O ₁₄	1 M LiTFSI+0.1wt% H ₃ Sb ₃ P ₂ O ₁₄ in DOL/EC/FEC	1	1	50	500	This work

Table S2. The performance comparison of various poly-DOL electrolytes in symmetric Li || Li cell.

Reference

1 F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi, L. Wang, X.-D. Zhang, Y. W. Zheng, J.-J. Zhou, L. Li and Y.-G. Guo., *Sci. Adv.*, 2018, **4**, eaat5383.

- 2 K. Khan, Z. Y. Tu, Q. Zhao, C. Z. Zhao and L. A. Archer., Chem. Mater., 2019, 31, 8466-8472.
- 3 J. Yu, X. D. Lin, J. P. Liu, J. T. T. Yu, M. J. Robson, G. D. Zhou, H. M. Law, H. R. Wang, B. Z. Tang and F. Ciucci., *Adv. Energy Mater.*, 2021, **12**, 2102932.
- 4 J. W. Xiang, Y. Zhang, B. Zhang, L. X. Yuan, X. T. Liu, Z. X. Cheng, Y. Yang, X. X. Zhang, Z. Li, Y. Shen, J. J. Jiang and Y. H. Huang., *Energ. Environ. Sci.*, 2021, **14**, 3510-3521.
- 5 Q. Zhao, X. T. Liu, S. J. Stalin, K. Khan and L. A. Archer., Nat. Energy, 2019, 4, 365-373.
- 6 J. P. Zheng, W. D. Zhang, C. Y. Huang, Z. Y. Shen, X. Y. Wang, J. Z. Guo, S. Y. Li, S. L. Mao and Y. Y. Lu., *Materials Today Energy*, 2022, **26**, 100984.
- 7 Q. Liu, B. Y. Cai, S. Li, Q. P. Yu, F. Z. Lv, F. Y. Kang, Q. Wang and B. H. Li., *J. Mater. Chem. A*, 2020, **8**, 7197-7204.
- 8 J. Q. Zhou, T. Qian, J. Liu, M. F. Wang, L. Zhang and C. L. Yan., Nano Lett., 2019, 19, 3066-3073.
- 9 Z. Y. Wen, Z. K. Zhao, L. Li, Z. Y. Sun, N. Chen, Y. J. Li, F. Wu and R. J. Chen., *Adv. Funct. Mater.*, 2022, **32**, 2109184.
- 10 B. Deng, M. X. Jing, R. Li, L. X. Li, H. Li, M. Q. Liu, J. Xiang, W. Y. Yuan and X. Q. Shen., *J. Colloid Interf. Sci.*, 2022, **620**, 199-208.
- 11 S. S. Wang, L. Zhou, M. K. Tufail, L. Yang, P. F. Zhai, R. J. Chen and W. Yang., *Chem. Eng. J.*, 2021, **415**, 128846.
- 12 S. J. Wen, C. Luo, Q. R. Wang, Z. Y. Wei, Y. X. Zeng, Y. D. Jiang, G. Z. Zhang, H. L. Xu, J. Wang, C. Y. Wang, J. Chang and Y. H. Deng., *Energy Stor. Mater.*, 2022, **47**, 453-461.
- 13 T. Chen, H. P. Wu, J. Wan, M. X. Li, Y. C. Zhang, L. Sun, Y. C. Liu, L. L. Chen, R. Wen and C. Wang., J. Chem., 2021, 62, 172-178.
- 14 D. L. Chen, M. Zhu, P. B. Kang, T. Zhu, H. C. Yuan, J. L. Lan, X. P. Yang and G. Sui., *Adv. Sci.*, 2022, 9, e2103663.
- 15 S. F. Song, W. L. Gao, G. M. Yang, Y. F. Zhai, J. Y. Yao, L. Y. Lin, W. P. Tang, N. Hu and L. Lu., *Materials Today Energy*, 2022, **23**, 100893.