Electronic Supplementary Information (ESI) for

Metal-organic framework derived trimetallic oxides with dual

sensing functions for ethanol

Xin-Yu Huang,^a Ya-Ru Kang,^b Shu Yan,^a Ahmed Elmarakbi,^c Yong-Qing Fu^{*c} and Wan-Feng Xie^{*a, d}

^a College of Electronics and Information, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao 266071, P. R. China.

^b School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^c Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.

^{*d*} Department of Physics, Dongguk University, Seoul 04620, South Korea.

Fig. S1 FE-SEM images of the Fe-MIL-88B template with different resolutions.

Fig. S2 Length distribution of elongated hexagonal rods of $Fe_7Co_{1.5}Ni_{1.5}$.

Fig. S3 SEM images of (a1, 2) $Fe_6Co_2Ni_2$, (b1, 2) $Fe_4Co_4Ni_2$, and (c1, 2) $Fe_2Co_6Ni_2$, respectively. Scale bar: 200 nm.

Fig. S4 TEM image of the Fe-MIL-88B template.

Fig. S5 Size distribution of nanoparticles of $Fe_7Co_{1.5}Ni_{1.5}$.

Fig. S6 EDS spectrum and contents (inset) of $Fe_7Co_{1.5}Ni_{1.5}$.

Fig. S7 N₂ adsorption-desorption isotherms of (a) Fe-MIL-88B and (c) $Fe_7Co_{1.5}Ni_{1.5}$, respectively. The corresponding pore diameter distribution of (b) Fe-MIL-88B (d) $Fe_7Co_{1.5}Ni_{1.5}$, respectively.

Fig. S10 (a) Responses of α -Fe₂O₃ towards 100 ppm ethanol at different operating temperatures. (b) The dynamic response curve of α -Fe₂O₃ towards different concentrations (from 5 to 1000 ppm) of ethanol at 250 °C. (c) The curve of responses *vs.* concentrations for α -Fe₂O₃. (d) The linear fitting of the response values as a function of ethanol concentrations.

Phase	2v (degree)						
	24.14	33.10	35.66	40.86	49.46	54.12	57.42
α-Fe ₂ O ₃ (PDF#33-0664)	(012)	(104)	(110)	(113)	(024)	(116)	(122)
Phase	2v (degree)						
	18.24	30.06	35.45	43.47	53.89	57.39	62.73
CoFe ₂ O ₄ (PDF#03-0864)	(111)	(220)	(311)	(400)	(422)	(511)	(440)
Phase	2v (degree)						
	18.43	30.31	35.70	43.38	53.81	57.43	63.02
NiFe ₂ O ₄ (PDF#54-0964)	(111)	(220)	(311)	(400)	(422)	(511)	(440)
Phase	2ϑ (degree)						
	18.84	31.00	36.52	38.20	44.30	58.72	66.48
Co _{1.29} Ni _{1.71} O ₄ (PDF#40-1191)	(111)	(220)	(311)	(222)	(400)	(511)	(440)

Table S1 The crystal planes of α -Fe₂O₃, CoFe₂O₄, and NiFe₂O₄ correspond to the observed characteristic diffraction peaks.