## **Supporting Information**

## MoS<sub>2</sub>/CoS heterostructures grown on carbon cloth as free-standing

## anodes for high-performance sodium-ion batteries

Fangfang Xue<sup>a</sup>, Feifan Fan<sup>a</sup>, Zhicheng Zhu<sup>a</sup>, Zhigang Zhang<sup>a</sup>, Yuefeng Gu<sup>b</sup>, Qiuhong Li<sup>a,b,\*</sup>

<sup>a</sup>Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China. Email: liqiuhong@xmu.edu.cn; Fax: +86-0592-2187196; Tel: +86-0592-2187198 <sup>b</sup>School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China



Fig. S1 The XRD pattern of MoS<sub>2</sub>/CoS@CC intermediate.



Fig. S2 SEM images of bare CC (a) and  $MoS_2/CoS$  intermediate arrays on CC (b, c), respectively.



Fig. S3 (a) XRD pattern, and (b,c) SEM images of MoS<sub>2</sub>@CC; (d) XRD pattern, and (e,f) SEM images of CoS@CC.



Fig.S4 XPS survey spectrum of MoS<sub>2</sub>/CoS@CC.



Fig.S5 CV curves of  $MoS_2@CC$  (a) and CoS@CC (b) at a scan rate of 0.1 mV s<sup>-1</sup>.



Fig.S6 SEM images of MoS<sub>2</sub>/CoS@CC electrodes after 100 cycles at a current density of 0.5 A  $g^{-1}$ .



Fig.S7 (a) CV curves of plain  $MoS_2@CC$  electrode at different scan rates. (b) The corresponding relationship between log(i) vs. log(v) at each redox peak current. (c) CV curve of the capacitive-controlled capacity at 1.2 mV s<sup>-1</sup>, denoted by theshaded area. (d) The capacitive- and diffusion-controlled behavior contribution ratios at different scan rates.



Fig.S8 (a) CV curves of plain CoS@CC electrode at different scan rates. (b) The corresponding relationship between log(i) vs. log(v) at each redox peak current. (c) CV curve of the capacitive-controlled capacity at 1.2 mV s<sup>-1</sup>, denoted by theshaded area. (d) The capacitive- and diffusion-controlled behavior contribution ratios at different scan rates.

| Materials                  | Cyclability<br>(mAh g <sup>-1</sup> )                      | Rate<br>capability<br>(mAh g <sup>-1</sup> ) | Ref  |
|----------------------------|------------------------------------------------------------|----------------------------------------------|------|
| 1T MoS2 nanosheets         | 410 at 0.1 A g <sup>-1</sup> after 150 cycles              | 253 at 2.0 A g <sup>-1</sup>                 | [1]  |
| MoS <sub>2</sub> –CNF      | 525 at 0.05 A $g^{-1}$ after 70 cycles                     | 186 at 2.0 A g <sup>-1</sup>                 | [2]  |
| HMF-MoS <sub>2</sub>       | 384 at 0.1 A g <sup>-1</sup> after 100 cycles              | 226 at 5.0 A g <sup>-1</sup>                 | [3]  |
| NiS/MoS <sub>2</sub> /C    | 16 at 0.1 A g <sup>-1</sup> after 60 cycles 398 at 5.0 A g |                                              | [4]  |
| MoS <sub>2</sub> -graphene | 313 at 0.05 A $g^{-1}$ after 200 cycles                    | 175 at 2.0 A g <sup>-1</sup>                 | [5]  |
| $MoS_2/CoS_2$              | 396.6 at 0.1 A g <sup>-1</sup> after 80 cycles             | 389 at 0.5 A g <sup>-1</sup>                 | [6]  |
| MoS <sub>2</sub> @CF       | 100 at 0.1 A g <sup>-1</sup> after 100 cycles              | 171 at 5.0 A g <sup>-1</sup>                 | [7]  |
| $Cu_2S@carbon@MoS_2$       | 365 at 0.3 A g <sup>-1</sup> after 100 cycles              | 297 at 3.0 A g <sup>-1</sup>                 | [8]  |
| MoS <sub>2</sub> /CoS@CC   | 605 at 0.5 A g <sup>-1</sup> after 100                     | 366 at 8.0 А σ <sup>-1</sup>                 | This |
|                            | cycles                                                     | 000 at 0.0 11 g                              | work |

Table S1 Electrochemical performances of reported MoS<sub>2</sub>-based anode for SIBs.

**Table S2** Fitting results of Nyquist plots based on the equivalent circuit in Fig. 5e.

| Electrodes               | <b>R</b> <sub>ct</sub> | R <sub>s</sub> | σ ( $\Omega$ cm <sup>2</sup> s <sup>-1/2</sup> ) |
|--------------------------|------------------------|----------------|--------------------------------------------------|
| MoS <sub>2</sub> /CoS@CC | 155.2                  | 6.0            | 548.0                                            |
| MoS <sub>2</sub> @CC     | 466.9                  | 7.0            | 1363.3                                           |
| CoS@CC                   | 204.1                  | 3,2            | 824.6                                            |

## References

[1] D. Sun, D. Huang, H.Y. Wang, G.L. Xu, X.Y. Zhang, R. Zhang, Y.G. Tang, D. Abd
Ei-Hady, W. Alshitari, A.S. Al-Bogami, K. Amine and M.H. Shao, Nano Energy, 2019,
61, 361-369.

[2] Q. Ni, Y. Bai, S.N. Guo, H.X. Ren, G.H. Chen, Z.H. Wang, F. Wu and C. Wu, ACS Appl. Mater. Interfaces, 2019, 11, 5183-5192.

- [3] Y. Li, R.P. Zhang, W. Zhou, X. Wu, H.B. Zhang, J. Zhang, ACS Nano, 2019, 13, 5533-5540.
- [4] H.Q. Xie, M. Chen and L.M. Wu, ACS Appl. Mater. Interfaces, 2019, 11, 41222-41228.
- [5] X. Geng, Y. Jiao, Y. Han, A. Mukhopadhyay, L. Yang and H. Zhu, Adv. Funct. Mater., 2017, 27, 1702998.
- [6] Y. Su, C.X. Wu, H. Li, F.J. Chen, Y. Guo, L. Yang and S.L. Xu, J. Alloys Compd., 2020, 845, 156229.
- [7] Z.H. Zhao, X.D. Hu, H.Q. Wang, M.Y. Ye, Z.Y. Sang, H.M. Ji, X.L. Li and Y.J. Dai, Nano Energy, 2018, 48, 526–535.
- [8] Y.J. Fang, D.Y. Luan, Y. Chen, S.Y. Gao and X.W. Lou (David), Angew. Chem.
   Int. Ed., 2020, 59, 7178 –7183.