Supplement Information

Bimetallic conjugated metal-organic frameworks as bifunctional electrocatalysts for overall water splitting

Tsz Lok Wan¹, Junxian Liu¹, Xin Tan², Minghao Liu¹, Sean Smith³*, Liangzhi Kou¹*

¹ School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia.

² Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, P.R. China.

³ Integrated Materials Design Laboratory, Department of Applied Mathematics, Research School of Physics, The Australian National University, Canberra, ACT, Australia.

sean.smith@anu.edu.au; liangzhi.kou@qut.edu.au

Additional computational details for DFT calculations

For OER, the absorption energies of all reaction intermediates OH*, O*, OOH* were calculated follows:

$$\Delta E_{OH^*} = E_{OH^*} - E_T - E_{H_2O} + \frac{1}{2}E_{H_2}$$
(S1)

$$\Delta E_{0^*} = E_{0^*} - E_T - E_{H_20} + E_{H_2} \tag{S2}$$

$$\Delta E_{OOH^*} = E_{OOH^*} - E_T - 2E_{H_2O} + \frac{3}{2}E_{H_2}$$
(S3)

where E_T , E_{OH*} , E_{O*} , E_{OOH*} are the total energy of the studied catalyst without adsorbed intermediate, and that adsorbed by OH*, O* and OOH* intermediates, respectively. E_{H_2O} and E_{H_2} are the energies of H₂O and H₂ molecule in the gas phase. The correction added to the adsorption energy to obtain the free energy is 0.05, 0.35, and 0.40 eV for adsorbed O, OH, and OOH, respectively.¹ the Gibbs free energy charges ΔG_{OER} (OER = OH*, O*, OOH*) are defined as following equation:

$$\Delta G_{OH^*} = \Delta E_{OH^*} - 0.35 \, eV \tag{S4}$$

$$\Delta G_{o^*} = \Delta E_{o^*} - 0.05 \ eV \tag{S5}$$

$$\Delta G_{OOH^*} = \Delta E_{OOH^*} - 0.4 \ eV \tag{S6}$$

where ${}^{\Delta G}{}_{OH}{}^*$, ${}^{\Delta G}{}_{o}{}^*$, and ${}^{\Delta G}{}_{OOH}{}^*$ denote the free energy changes of the studied catalyst with adsorbed OH^{*}, O^{*}, and OOH^{*} intermediates, respectively. Each step of reaction free energy charges ${}^{\Delta G}{}_i$ (*i* = 1, 2, 3, 4) can be determined by the following equation:

$$\Delta G_1 = \Delta G_{OH^*} - \Delta G_{H_2O} \tag{S7}$$

$$\Delta G_2 = \Delta G_{O^*} - \Delta G_{OH^*} \tag{S8}$$

$$\Delta G_3 = \Delta G_{OOH^*} - \Delta G_{O^*} \tag{S9}$$

$$\Delta G_4 = \Delta G_{O_2} - \Delta G_{OOH^*} \tag{S10}$$

where ΔG_1 , ΔG_2 , ΔG_3 and ΔG_4 are the Gibbs free energy change for the four OER steps: OH^{*} formation by dissociative adsorption of H₂O, O^{*} formation by deprotonation, O^{*} oxidation to OOH^{*}, O₂ formation and release.

For HER, the absorption energies of H* was calculated follows:

$$\Delta E_{H^*} = E_{H^*} - E_T - \frac{1}{2}E_{H_2} \tag{S11}$$

where ${}^{E}_{H^*}$ is the total energy of the studied catalyst with H^{*} intermediate. The correction added to the adsorption energy to obtain the free energy is 0.24 eV for adsorbed H intermediate.² This means that

$$\Delta G_{H^*} = \Delta E_{H^*} + 0.24 \, eV \tag{S12}$$

Fig. S1 The variations of temperature and energy versus the time for AIMD simulations of all designed PcTM-O₈-TM' 2D c-MOFs under 300 K for 5000 fs.

PcCo-O₈-Cu-A, b) PcCo-O₈-Cu-B, c) PcCu-O₈-Co-A, d) PcCu-O₈-Co-B, e) PcCo-O₈-Ir-A, f) PcIr-O₈-Co-A, g) PcIr-O₈-Co-B, h) PcCo-O₈-Rh-A, i) PcCo-O₈-Rh-B, j) PcRh-O₈-Co-A, k) PcRh-O₈-Co-B. The value of onset potential is marked in diagram.

Table S1. Reaction free energies ΔG_i (i = 1, 2, 3, 4) of intermediate steps (U = 0V) at oxygen active sites. The values in the bracket and red denote the chemical reaction process on the B site and the largest energy difference, respectively.

Systems	ΔG_1	ΔG_2	ΔG_3	ΔG_4
PcCo-O ₈ -Cu	1.82	1.68	1.44	-0.02
	(2.75)	(2.26)	(0.42)	(-0.51)
PcCu-O ₈ -Co	2.92	2.25	0.41	-0.67
	(1.62)	(1.50)	(1.69)	(0.11)
PcCo-O ₈ -Ir	1.58	1.54	1.53	0.27
	(N/A)	(N/A)	(N/A)	(N/A)
PcIr-O ₈ -Co	1.48	1.72	1.26	0.46
	(1.64)	(1.36)	(1.83)	(-0.04)
PcCo-O ₈ -Rh	1.42	1.67	1.34	0.49
	(1.48)	(1.43)	(1.44)	(0.57)
PcRh-O ₈ -Co	1.31	1.78	1.11	0.72
	(1.82)	(1.75)	(1.14)	(0.21)

Table S2. Electron transfer (e) of TM, N, and O atoms at PcTM-O₈-TM'. (Q_{TM} , $Q_{TM'}$, Q_N , and Q_O in e per unit cell)

Systems	Q_{TM}	$Q_{\mathrm{TM'}}$	$Q_{ m N}$	Qo
	0.04	0.01	+0.43/+0.38	+0.80/+0.77
rcco-0 ₈ -cu	-0.94	-0.91	+0.37/+0.42	+0.85/+0.75

PcCu-O ₈ -Co	-0.82	-1.17	+0.72/+0.89 +0.82/+0.89	+0.51/+0.52 +0.52/+0.52
PcCo-O ₈ -Ir	-0.93	-1.86	+0.42/+0.38 +0.38/+0.42	+0.68/+0.68 +0.69/+0.69
PcIr-O ₈ -Co	-1.68	-1.18	+0.56/+0.60 +0.59/+0.60	+0.52/+0.51 +0.52/+0.52
PcCo-O ₈ -Rh	-0.93	-1.48	+0.42/+0.37 +0.38/+0.43	+0.59/+0.60 +0.61/+0.60
PcRh-O ₈ -Co	-1.33	-1.18	+0.49/+0.52 +0.51/+0.52	+0.52/+0.52 +0.52/+0.52

Table S3. Reaction free energies ΔG_i (i = 1, 2, 3, 4) of intermediate steps (U = 0V) at PcCo-O₈-Rh under tensile strain. The values in the bracket and red denote the chemical reaction process on the B site and the largest energy difference, respectively.

Stain (%)	ΔG_1	ΔG_2	ΔG_3	ΔG_4
0	1.42	1.67	1.34	0.49
	(1.48)	(1.43)	(1.44)	(0.57)
1	1.70	1.35	1.23	0.64
	(1.59)	(0.86)	(1.50)	(0.97)
2	1.72	1.28	1.23	0.69
	(1.62)	(0.82)	(1.43)	(1.05)
3	1.74	1.22	0.23	0.73
	(1.64)	(0.76)	(1.42)	(1.10)

Table S4. The intermediates adsorptions on the PcCo-O₈-Rh-B under the synergetic effect with the A site: Gibbs free energy change of OH^{*}, O^{*}, OOH^{*}, H^{*} intermediate of OER and HER $(\Delta G_{OH^*}, \Delta G_{O^*}, \Delta G_{OOH^*}, \Delta G_{H^*} \text{ in eV})$, overpotential (η_{OER} in V), onset potential (U_{HER} and U_{OER} in V).

	ΔG_{OH^*}	ΔG_{O^*}	ΔG_{OOH^*}	$\Delta G_{\mathrm{H}^{\ast}}$	η_{OER}	U _{HER}	U _{OER}
PcCo-O ₈ -Rh-B (synergetic)	1.51	2.51	3.57	-0.17	0.28	-0.17	1.51
PcCo-O ₈ -Rh-B (un-synergetic)	1.48	2.91	4.35	-0.19	0.25	-0.19	1.48

Table S5. Electron transfer of Co, Rh, N and O atoms at PcCo-O₈-Rh under tensile strain. (Q_{Co} , Q_{Rh} , Q_N , Q_O in e per unit cell)

Stain (%)	$Q_{ m Co}$	$Q_{ m Rh}$	$Q_{ m N}$	$Q_{ m O}$
0	-0.93	-1.48	+0.42/+0.37	+0.59/+0.60
			+0.30/+0.43	+0.58/+0.58
1 -0.88	-0.88		+0.36/+0.41	+0.60/+0.59
2	-0.78	-1.12	+0.38/+0.33	+0.56/+0.57
			+0.35/+0.39	+0.58/+0.57
3	-0.70	-0.94	+0.36/+0.30	+0.54/+0.56

References

- 1. J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes and J. K. Nørskov, *J. Electroanal. Chem.*, 2007, **607**, 83-89.
- 2. J. K. Nørskov, T. Bligaard, A. Logadottir, J. Kitchin, J. G. Chen, S. Pandelov and U. Stimming, *J. Electrochem. Soc.*, 2005, **152**, J23.