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I. HYBRID EXCITON LANDSCAPE IN TMD BILAYERS

In here, we discuss how the exciton landscape in TMD bilayers is obtained within our theoretical framework, taking
into account the effect of layer-hybridization. The starting-point is a two-dimensional system containing pure intra-
and interlayer excitons. The intra- and interlayer exciton binding energies and wave functions in TMD bilayers are
obtained from solving the bilayer Wannier equation [1]
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where φξL
n,k is the excitonic wave function in state n = 1s, 2s..., valley ξ = (ξe, ξh), and layer L = (le, lh) and EξL

n,bind is

the exciton binding energy. Here, the reduced exciton mass mξL
red = mξelemξhlh

mξhlh+mξele
, as well as the screened electron-hole

Coulomb interaction V
clevlh
q enter. The valley-specific electron (hole) masses mξele (mξhlh) are obtained from DFT

calculations [2]. When evaluating the Coulomb matrix elements we explicitly include the finite thickness of the TMD
layers as well as the as the dielectric environment via a generalized Keldysh screening [3]. In this work, we explicitly
include hybridization of intra (X)- and interlayer (IX) excitons. In particular, the four possible intra- and interlayer
exciton states (here expressed as L ≡ IX1, IX2, X1, X2 focusing on the energetically lowest n = 1s transitions such
that the exciton index can be omitted) are generally coupled by electron/hole tunneling. The resulting hybrid exciton
states are obtained from diagonalizing the following exciton Hamiltonian [4, 5]
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∑
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containing the exciton centre-of-mass dispersion Eξ
L,Q = ℏ2Q2

2MξL + EξL
bind +∆ξL, MξL = mξhlh +mξele being the total

exciton mass, X(†) being excitonic and bosonic ladder operators and ∆ξL is the valley-specific band gap. The free
Hamiltonian also contains a tunneling contribution which takes into account the tunneling of electrons and holes
between different layers (le ̸= l′e or lh ̸= l′h) via the excitonic tunneling matrix element

T ξ
LL′ = F ξ

LL′ [T
cξe
lel′e

δlh,l′h(1− δl′e,le)− T vξh
lhl′h

δle,l′e(1− δl′h,lh)] . (S3)

The excitonic tunneling matrix element crucially depends on electron and hole tunneling strengths, T cξe
lel′e

and T vξh
lhl′h

respectively, as well as exciton wave function overlaps F ξ
LL′ =

∑
k φ

∗ξL
k φξL′

k . The electron and hole tunneling strengths
are obtained from ab-initio calculations and are reported in Ref. [4] for common TMD bilayers. For the considered case
of 2H-stacked WSe2 homobilayers we adopt the tunneling strengths T cK = 0, T vK = 66.9 meV and T cΛ = 236.6 meV
for the most relevant K/K’ and Λ/Λ’ valleys in this structure. Note that the electronic tunneling matrix elements are
generally stacking- and momentum-dependent, however in this work we focus on naturally stacked (Hh

h ) homobilayers,
and evaluate the matrix elements at the high-symmetry points. The Hamiltonian in Eq. (S2) is now diagonalized via
the basis transformation [5]

X†ξ
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∑
η

Cξη
L (Q)Y †ξ

η,Q , (S4)

where Y (†) is a new set of hybrid exciton operators and Cξη
L (Q) is the mixing coefficient determining the relative

intra/interlayer content of the hybrid exciton, enabling us to define a hybrid exciton state as |hXη⟩ =
∑

i=1,2(C
η
Xi

|Xi⟩+
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Cη
IXi

|IXi⟩) with
∑

i=1,2(|C
η
Xi

|2+ |Cη
IXi

|2) = 1 for a fixed hybrid exciton state η. The mixing coefficients are obtained

from solving the following hybrid eigenvalue problem[6]
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introducing the hybrid exciton eigenenergy E
(hX)ξ
η,Q . We can now express the exciton Hamiltonian above in the hybrid

basis such that Hx,0 → H̃x,0 with

H̃x,0 =
∑
ξ,η,Q

E
(hX)ξ
η,Q Y †ξ

η,QY ξ
η,Q . (S6)

By solving the eigenvalue problem in Eq. (S5) we get microscopic access to the full hybrid exciton landscape in TMD
bilayers. Furthermore, we investigate the impact of an electric field on the hybrid exciton landscape. This is done

by exploiting the electrostatic Stark shift of interlayer resonances, i.e. by taking Eξ
L=IX,Q → Eξ

L=IX,Q + ∆E, with

∆E = ±de0Ez, where d ≈ 0.65 nm is the dipole length (here assumed to be the same as the TMD layer thickness
[7]),e0 is the electric charge and Ez is the out-of-plane electric field [8]. In this way, hybrid exciton eigenenergies and
mixing coefficients become tunable with respect to electric fields. In Table S1, we report the exciton hybrid energies
and intralayer and interlayer mixing coefficients for hybrid excitons composed by electrons in the ξe = K, K’, Λ, Λ’
valleys and holes in the ξh = K, K’ valleys in 2H-stacked hBN-encapsulated WSe2 homobilayers. The energies are
given relative to the intralayer A exciton energy and the electric fields Ez = 0,±0.3 V/nm are considered.

Exciton Energy E − EXA(meV) Intralayer component |CX |2 Interlayer component |CIX |2

ξ = (ξh, ξe) Ez = −0.3 Ez = 0 Ez = 0.3 Ez = −0.3 Ez = 0 Ez = 0.3 Ez = −0.3 Ez = 0 Ez = 0.3

KΛ -123 -159 -209 0.85 0.77 0.61 0.15 0.23 0.39

K’Λ’ -209 -159 -123 0.61 0.77 0.85 0.39 0.23 0.15

KΛ’ -12 -117 -258 0.58 0.36 0.2 0.42 0.64 0.8

K’Λ -258 -117 -12 0.2 0.36 0.58 0.8 0.64 0.42

KK -5 0 -179 0.96 1 0.01 0.04 0 0.99

K’K’ -179 0 -5 0.01 1 0.96 0.99 0 0.04

KK’ -58 -53 -137 0.96 1 0.01 0.04 0 0.99

K’K -137 -53 -58 0.01 1 0.96 0.99 0 0.04

TABLE S1. Exciton landscape in hBN-encapsulated 2H-stacked WSe2 homobilayers. We provide the valley-specific energies,
intralayer components and interlayer components of hybrid excitons for three different values on the electric field, Ez = 0,±0.3
V/nm. The energetically lowest transitions for each electric field are marked in bold and energies are given relative to the KK
intralayer A exciton energy (EXA). For vanishing electric fields we find that the KΛ and K’Λ’ states represent the energetically
lowest states.

Note that the KΛ and K’Λ’ exciton states are energetically degenerate at vanishing electric fields. This is a consequence
of the H-type stacking, where the individual TMD layers are rotated 180 degrees with respect to each other such
that the spin-orbit coupling in one of the layers is inverted. Moreover, these states can be expressed as |KΛ⟩ =

CKΛ
X1

|X1⟩+ CKΛ
IX1

|IX1⟩ and |K ′Λ′⟩ = CK′Λ′

X2
|X2⟩+ CK′Λ′

IX2
|IX2⟩ such that each of the states only mixes contributions

from a single intralayer and a single interlayer exciton species. Hence, it follows that the KΛ and K’Λ’ hX carry
opposite out-of-plane dipole moments via their interlayer components, and therefore the energy of these states shifts
in opposite directions under the application of an electric field (cf. Table S1).
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II. HYBRID EXCITON-EXCITON INTERACTION HAMILTONIAN

Here, we provide a microscopic derivation of the hybrid exciton-exciton interaction Hamiltonian. The starting-point
is the bilayer carrier-carrier Hamiltonian:

Hc−c =
1

2

∑
λ(′),ξ(′),l(′)

V
λlλ

′
l′

q λ†
ξ,l,k+qλ

′†
ξ′,l′,k′−qλ

′
ξ′,l′,k′λξ,l,k , (S7)

where λ(′) = (c, v), ξ, and l(
′) are the band, valley, and layer indices, respectively. Here, the operators λ(†) annihilate

(create) carriers in band λ. Moreover, we note that V
λlλl′
q describes an intraband intralayer Coulomb interaction if

l = l′ and an interlayer Coulomb interaction if l ̸= l′. Furthermore, we consider the long-range part of the Coulomb

interaction such that V
λlλ

′
l

q ≈ e20
2ϵ0A|q|ϵintra,q and V

λlλ
′
l̄

q ≈ e20
2ϵ0A|q|ϵinter,q (l ̸= l̄). The intra- and interlayer dielectric

functions ϵintra,q and ϵinter,q can be found in the Supplementary Material of Ref. [9]. Interband Coulomb interactions,
which give rise to electron-hole exchange [10] or Auger recombination [11], are not expected to contribute significantly
to experimentally accessible density-dependent energy renormalizations (Supplementary Section IV) and are therefore
neglected in this work.

Given the carrier-carrier Hamiltonian, we now proceed as follows: i) we find the equation of motion for the

intervalley polarisation ⟨P †ξele,ξhlh
k1+Q,k1

⟩ ≡ ⟨c†ξe,le,k1+Qvξh,lh,k1⟩, ii) transform the equation of motion to the exciton basis

[12], iii) make an ansatz for the exciton-exciton interaction Hamiltonian and compute the equation of motion for the
polarisation in the exciton picture, iv) read off the exciton-exciton interaction matrix element such that the results
from steps ii) and iii) coincide. Starting with the first step i), we obtain the equation of motion for the polarisation
directly from the Heisenberg equation of motion [1]. Including only the Coulomb contributions from Eq. (S7) we
obtain

iℏ
d

dt
⟨P †ξele,ξhlh

k1+Q,k1
⟩ = 1

2

∑
k,q,l,ξ

(
V

vlhvl
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†
ξ,l,k−q⟩ − ⟨c†ξe,le,k1+Qvξh,lh,k1−qvξ,l,kv

†
ξ,l,k−q⟩)

+ V
clcle
q (⟨c†ξ,l,k+qvξh,lh,k1

c†ξe,le,k1+Q−qcξ,l,k⟩ − ⟨c†ξe,le,k1+Q−qvξh,lh,k1
c†ξ,l,k+qcξ,l,k⟩)

+ V
vlcle
q (⟨c†ξe,le,k1+Q−qvξh,lh,k1vξ,l,kv

†
ξ,l,k+q⟩ − ⟨c†ξe,le,k1+Q−qvξ,l,kvξh,lh,k1v

†
ξ,l,k+q⟩)

+ V
vlhcl
q (⟨c†ξe,le,k1+Qvξh,lh,k1−qc

†
ξ,l,k−qcξ,l,k⟩ − ⟨c†ξ,l,k−qvξh,lh,k1−qc

†
ξe,le,k1+Qcξ,l,k⟩)

)
. (S8)

Next, we transform the entire equation above to the excitonic basis and make use of the pair operator expansions [12]

c†ξe,le,kcξ′e,l′e,k′ ≈
∑

ξ′′h ,l′′h ,k
′′

P
†ξele,ξ′′h l′′h
k,k′′ P

ξ′el
′
e,ξ

′′
h l′′h

k′,k′′ , vξh,lh,kv
†
ξ′h,l

′
h,k

′ ≈
∑

ξ′′e ,l′′e ,k
′′

P
†ξ′′e l′′e ,ξhlh
k′′,k P

ξ′′e l′′e ,ξ
′
hl

′
h

k′′,k′ , (S9)

where the pair operators can be further expressed in the exciton basis as P ξele,ξhlh
k,k′ =

∑
n φ

ξL
n,βξLk+αξLk′X

ξ
n,L,k−k′ ,

with φξL
n,k being the exciton wave function (cf. Supplementary Section I) and the compound indices ξ = (ξe, ξh),

L = (le, lh) (such that le = lh corresponds to the intralayer wave function and le ̸= lh corresponds to the interlayer
wave function). In the following, we will only consider the lowest-lying n = 1s exciton states, so that the index n can
be omitted. By doing this, the equation of motion Eq. (S8) separates into two parts, a direct part and an exchange
part. The second, fourth, fifth and seventh term in Eq. (S8) gives rise to the direct terms reading

iℏ
d

dt
⟨X†ξ′

L′,Q⟩|dir. =
1

2

∑
q,Q1,ξ,L

(
V

cl′e
vlh

q F (αξ′L′
q)F (βξLq) + V

clevl′
h

q F (−αξ′L′
q)F (−βξLq) (S10)

− V
clecl′e
q F (βξ′L′

q)F (−βξLq))− V
vl′

h
vlh

q F (−αξ′L′
q)F (αξLq)

)
⟨X†ξ′

L′,Q+qX
†ξ
L,Q1−qX

ξ
L,Q1

⟩ ,

where we introduced the compound indices ξ(
′) = (ξ

(′)
e , ξ

(′)
h ) and L(′) = (l

(′)
e , l

(′)
h ). Here, we also defined the excitonic

form factors F (xξLq) ≡
∑

k φ
∗ξL
k+xξLq

φξL
k . We may now construct the corresponding direct exciton-exciton interaction

Hamiltonian with

Hx−x|dir. =
1

2

∑
Q1,Q2,q
ξ,ξ′,L,L′

Dξξ′

L,L′,qX
†ξ′
L′,Q1+qX

†ξ
L,Q2−qX

ξ
L,Q2

Xξ′

L′,Q1
, (S11)
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with the direct part of the exciton-exciton interaction reading

Dξξ′

L,L′,q =
1

2

(
V

clecl′e
q F (βξ′L′

q)F (−βξLq)) + V
vl′

h
vlh

q F (−αξ′L′
q)F (αξLq) (S12)

− V
cl′e

vlh
q F (αξ′L′

q)F (βξLq)− V
clevl′

h
q F (−αξ′L′

q)F (−βξLq)

)
,

such that a commutation of the excitonic Hamiltonian (S11) with the polarisation gives rise to Eq. (S10). We note
that, in the long wavelength limit

Dξξ′

Xi,Xi,0
= Dξξ′

Xi,Xj ,0
= 0 , Dξξ′

IXi,IXi,0
= −Dξξ′

IXi,IXj ,0
=

e20
4Aϵ0

(
d1,TMD

ϵ⊥1,TMD

+
d2,TMD

ϵ⊥2,TMD

) , i ̸= j (S13)

i.e. we find a vanishing direct interaction between intralayer excitons (L,L′ = Xi, i = 1, 2) and recover the widely
used plate capacitor formula when considering interactions between interlayer excitons (L,L′ = IXi, i = 1, 2) as has
been previously confirmed in literature [11, 13, 14]. Here, the material-specific constants di,TMD and ϵ⊥i,TMD denote
individual TMD monolayer thicknesses and out-of-plane components of the TMD dielectric tensors, respectively. In
the main manuscript we set d1,TMD = d2,TMD ≡ dTMD and ϵ⊥1,TMD = ϵ⊥2,TMD ≡ ϵ⊥TMD as we are considering a
homobilayer. Note that interactions between different interlayer exciton species IXi and IXj , i ̸= j are attractive
due to the opposite dipole orientations of these excitons. Now, we consider the remaining terms (i.e. the first, third,
fifth and eight terms) in Eq. (S8) and find that these give rise to the following exchange terms

iℏ
d

dt
⟨X†ξ′

L′,Q⟩|exch. =
1

2

∑
q,Q1,k,k

′

ξ,ξ̃,ξ̄

L,L̃,L̄

(
(V

clecl′e
k−k′ φξ′L′

k−αξ′L′Q−q
− V

clevl′
h

k−k′ φξ′L′

k′−αξ′L′Q−q
)× (S14)

δ
ξh,ξ

′
h

lh,l′h
δ
ξ̃e,ξ

′
e

l̃e,l′e
δξ̄e,ξe
l̄e,le

δξ̄h,ξ̃h
l̄h,l̃h

φ∗ξL
k−αξL(Q+q)

φ∗ξ̃L̃
k′−βξ̃L̃q−αξ̃L̃Q1

φξ̄L̄

k′−αξ̄L̄Q1

+ (V
vl′

h
vlh

k−k′ φξ′L′

k+βξ′L′Q+q
− V

cl′e
vlh

k−k′ φξ′L′

k′+βξ′L′Q+q
)×

δ
ξe,ξ

′
e

le,l′e
δ
ξ̃h,ξ

′
h

l̃h,l′h
δξ̄e,ξ̃e
l̄e,l̃e

δξ̄h,ξh
l̄h,lh

φ∗ξL
k+βξL(Q+q)

φ∗ξ̃L̃
k′+αξ̃L̃q+βξ̃L̃Q1

φξ̄L̄

k′+βξ̄L̄Q1

)
×

⟨X†ξ
L,Q+qX

†ξ̃
L̃,Q1−q

X ξ̄

L̄,Q1
⟩

from which we may construct an exchange matrix element such that

d

dt
⟨X†ξ′

L′,Q⟩|exch. =
i

ℏ
∑
q,Q1

ξ,ξ̃,ξ̄

L,L̃,L̄

Eξξ̃ξ̄ξ′

L,L̃,L̄,L′,Q,Q1,q
⟨X†ξ

L,Q+qX
†ξ̃
L̃,Q1−q

X ξ̄

L̄,Q1
⟩ , (S15)

where the exchange part of the exciton-exciton interaction reads

Eξ1ξ2ξ3ξ4
L1,L2,L3,L4,Q1,Q2,q

=
1

2

∑
k,k′

(
(V

cl1,evl4,h
k−k′ φξ4L4

k′−αξ4L4Q1−q
− V

cl1,ecl4,e
k−k′ φξ4L4

k−αξ4L4Q1−q
)×

δ
ξ1,h,ξ4,h
l1,h,l4,h

δ
ξ2,e,ξ4,e
l2,e,l4,e

δ
ξ3,e,ξ1,e
l3,e,l1,e

δ
ξ3,h,ξ2,h
l3,h,l2,h

φ∗ξ1L1

k−αξ1L1 (Q1+q)
φ∗ξ2L2

k′−βξ2L2q−αξ2L2Q2
φξ3L3

k′−αξ3L3Q2

+ (V
cl4,evl1,h
k−k′ φξ4L4

k′+βξ4L4Q1+q
− V

vl4,hvl1,h
k−k′ φξ4L4

k+βξ4L4Q1+q
)×

δ
ξ1,e,ξ4,e
l1,e,l4,e

δ
ξ2,h,ξ4,h
l2,h,l4,h

δ
ξ3,e,ξ2,e
l3,e,l2,e

δ
ξ3,h,ξ1,h
l3,h,l1,h

φ∗ξ1L1

k+βξ1L1 (Q1+q)
φ∗ξ2L2

k′+αξ2L2q+βξ2L2Q2
φξ3L3

k′+βξ3L3Q2

)
.

(S16)

Here, we note that the first term corresponds to hole-hole exchange within the excitons and the second term corre-
sponds to electron-electron exchange. In particular, the Kronecker deltas imply that fermionic exchange of individual
charge constituents is only allowed if charges of the same species reside in the same layer and valley. Moreover, the
exchange interaction is generally dependent on both centre-of-mass momenta Q1,Q2 as well as the relative momentum
q. In the long wavelength limit (q,Q1, Q2 ≪ a−1

B , aB being the exciton Bohr radius) the exchange interaction is non-
vanishing for both intra- and interlayer exciton species, and it is the dominating contribution to the exciton-exciton
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interaction for intralayer excitons [13, 15, 16]. However, we remark that the resulting density-dependent energy
renormalizations due to intralayer exchange interactions are negligible (see Supplementary Section IV). Exchange
interactions are therefore not considered in the main manuscript, but included here only for the sake of completeness.
Hence, we obtain the exchange part of the exciton-exciton Hamiltonian

Hx−x|exch. =
1

2

∑
Q1,Q2,q
ξ1...ξ4
L1...L4

Eξ1ξ2ξ3ξ4
L1,L2,L3,L4,Q1,Q2,q

X†ξ1
L1,Q1+qX

†ξ2
L2,Q2−qX

ξ3
L3,Q2

Xξ4
L4,Q1

. (S17)

We now have access to the multilayer exciton-exciton interaction involving both intra- and interlayer excitons. How-
ever, generally, excitons are hybridized between the layers due to electron/hole tunneling. To include the effect of
hybridization, we transform the excitonic operators to the hybrid basis, cf. Eq. (S4). The exciton-exciton Hamiltonian
then transforms into a hybrid Hamiltonian

H̃x−x =
1

2

∑
η1...η4
ξ1...ξ4

Q1,Q2,q

W̃ ξ1ξ2ξ3ξ4
η1,η2,η3,η4,Q1,Q2,q

Y †ξ1
η1,Q1+qY

†ξ2
η2,Q2−qY

ξ3
η3,Q2

Y ξ4
η4,Q1

, (S18)

where the hybrid exciton-exciton interaction contains of a direct part and an exchange part according to

D̃ξ1ξ2
η1,η2,η3,η4,Q1,Q2,q

=
∑
L1,L2

Dξ1ξ2
L1,L2,q

C∗ξ1η1

L1,Q1+qC
ξ1η4

L1,Q1
C∗ξ2η2

L2,Q2−qC
ξ2η3

L2,Q2
, (S19)

and

Ẽξ1ξ2ξ3ξ4
η1,η2,η3,η4,Q1,Q2,q

=
∑

L1,L2,L3,L4

Eξ1ξ2ξ3ξ4
L1,L2,L3,L4,Q1,Q2,q

C∗ξ1η1

L1,Q1+qC
ξ4η4

L4,Q1
C∗ξ2η2

L2,Q2−qC
ξ3η3

L3,Q2
, (S20)

with the unhybrised direct (D) and exchange (E) matrix elements defined in Eq. (S12) and (S16), respectively.
Having derived the most general form of the hybrid exciton-exciton interaction, we now remark on the considered
case of untwisted homobilayers. In this case, it holds that the mixing coefficients are approximately constant in

momentum, such that Cξη
L,Q ≈ Cξη

L [4]. Consequently, the direct hybrid exciton-exciton interaction depends only on
the relative momentum q. In the main manuscript, we only consider the lowest-lying hybrid exciton states for each
valley configuration and therefore the indices ηi, i = 1...4 are omitted therein. Moreover, note that the intra- and
interlayer mixing coefficients enter the hybrid exciton-exciton interaction strengths. This provides an intriguing way
of tuning the interaction strength with externally applied electric fields.

III. DIPOLE-DIPOLE INTERACTION

In here, we show that the real-space representation of the direct interlayer exciton-exciton interaction (Eq. (S12),
with L = L′ = IX and ξ = ξ′) can be interpreted as a classical dipole-dipole interaction at large distances. By
considering the two TMD layers forming the homobilayer as two infinitely thin slabs separated by the distance d
and approximating the dielectric environment as homogenous, with a single effective dielectric constant ϵBL, we find
an analytic expression for the direct exciton-exciton interaction. Within these approximations, the intra (X)- and
interlayer (IX) Coulomb interactions read [3]

V X
q =

e20
2ϵ0A|q|ϵBL

, V IX
q =

e20
2ϵ0A|q|ϵBL(1 + tanh(|q|d))

. (S21)

Now, substituting these simplified expressions into the direct exciton-exciton interaction and setting the excitonic
form factors F ≈ 1, we find that the direct interlayer exciton-exciton interaction reduces to

DIX,IX,q ≈ e20
2ϵ0A|q|ϵBL

(1− 1

1 + tanh(|q|d)
) . (S22)

The real-space representation of the interaction is obtained by taking the Fourier-transform:

DIX,IX(r) =
e20

4πϵ0ϵBL
(
1

|r|
− 1

d(
√
4 + |r|2/d2)

) . (S23)
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Finally, we are interested in the asymptotic behavior of the interaction and therefore let r ≫ d. In this limit, we find

DIX,IX(r) =
d2e20

2πϵ0ϵBL

1

|r|3
+O(|r|−5) , (S24)

which is precisely a classical dipole-dipole interaction. Now, as the interlayer components of the mixing coefficients are
approximately constant in momentum (cf. Supplementary Section I) for untwisted TMD homobilayers, we note that
also the corresponding real-space hybrid exciton-exciton interaction obeys the asymptotic 1/r3 behavior for large r.
In Fig. S1, we show the direct hybrid exciton-exciton interaction strength between KΛ excitons in hBN-encapsulated
WSe2 homobilayers as a function of distance, r, including the dominant interlayer contributions to the interaction
(solid yellow curve). Unlike in the main manuscript, we here plot the logarithm of the interaction strength over large
distances. Importantly, we find that the interaction scales as 1/r3 (dashed black curve) at distances r ≳ 15 nm. This
confirms the dipole-dipole-like character of the hybrid exciton-exciton interaction at large distances.

FIG. S1. Real-space representation of the hybrid exciton-exciton interaction for KΛ excitons. Note that we here have taken
the logarithm of the interaction strength.

IV. DENSITY-DEPENDENT ENERGY RENORMALIZATIONS FOR HYBRID EXCITONS

Having access to the microscopic hybrid exciton-exciton Hamiltonian (Eq. (S18) and Supplementary Section II)
implies that we are now also able to investigate density-dependent energy renormalizations of hybrid excitons. These
energy renormalizations can be derived from the corresponding Heisenberg equation of motion for the (hybrid) polar-

isation ⟨Y †
ζ,Q⟩ reading

d

dt
⟨Y †

ζ,Q⟩ = i

ℏ
∑

Q1,q,ζ1,ζ2,ζ3

W̃ ζ1ζ2ζ3ζ
Q,Q1,q

⟨Y †
ζ1,Q+qY

†
ζ2,Q1−qYζ3,Q1⟩ , (S25)

where we introduced the compound index ζ = (ξ, η) including the valley index ξ and the hybrid exciton index η.
Now, we consider the equation above on a Hartree-Fock level, i.e. we expand the appearing bosonic three-operator
expectation value into single-particle expectation values and neglect two-particle correlations. We also make use of
the random phase approximation (RPA) [1] such that the equation above becomes

d

dt
⟨Y †

ζ,Q⟩ ≈ i

ℏ
∑
q,ζ1

(W̃ ζζ1ζ1ζ
Q,q,0 + W̃ ζ1ζζ1ζ

Q,q,q−Q)Nζ1
q ⟨Y †

ζ,Q⟩ , (S26)

where we defined the hybrid exciton occupationNζ
Q ≡ ⟨Y †

ζ,QYζ,Q⟩. Here we also approximated ⟨Y †
ζ,QYζ′,Q′⟩ ≈ δζ,ζ

′

Q,Q′N
ζ
Q

making use of the RPA. Note that the energy renormalization consists of two terms, the first term being a direct term
and the second being an exchange term, with the latter reflecting exciton exchange [13]. In contrast to the exchange

interaction Ẽ which includes exchange of individual carriers, the exciton exchange takes into account the exchange of
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individual excitons. Furthermore, we consider low temperatures in this work such that the exciton distribution Nq is

strongly peaked around q = 0 and assume the centre-of-mass momentum |Q| ≪ a−1
B , where aB is the exciton Bohr

radius. This reduces the equation above to d
dt ⟨Y

†
ζ,Q⟩ ≈ i

ℏδE
ζ⟨Y †

ζ,Q⟩ introducing the energy renormalization

δEζ = A
∑
ζ1

(W̃ ζ1ζζ1ζ
0,0,0 + W̃ ζζ1ζ1ζ

0,0,0 )nζ1
x , (S27)

where nζ1
x ≡ 1

A

∑
Q Nζ1

Q with A being the crystal area (cancelling out with the area A in the electronic Coulomb

matrix elements). Finally, we restrict ourselves to the energetically lowest hybrid exciton states in this work such that
the compound index ζ reduces to the valley index ξ. Generally, the energy renormalization of a hybrid exciton ξ is
obtained by taking into account the interactions between all the different exciton species. By assuming that nξ

x ∝ nx,
i.e. assuming a thermalized Boltzmann distribution for the hybrid excitons, where nx =

∑
ξ n

ξ
x is the total exciton

density, the energy renormalization of a single exciton species can be quantified by a valley-specific effective dipole
length dξ obtained from

δEξ = A
∑
ξ1

(W̃ ξ1ξξ1ξ
0,0,0 + W̃ ξξ1ξ1ξ

0,0,0 )nξ1
x ≡ dξe20

ϵ0ϵ⊥TMD

nx . (S28)

In the evaluation of valley-specific dipole lengths we here only include the direct (dipole-dipole) contributions to the
hybrid exciton-exciton interaction, cf. Eq. (S18). This is done as interlayer exchange interactions are seen to provide a
small quantitative correction to the dipole-dipole interaction [9]. Moreover, although intralayer exchange interactions
taking into account individual exchange of carriers are dominant in TMD monolayers [11, 14], they have negligible
impact on the energy renormalizations, as their contributions are largely cancelled out against contributions due to
higher-order correlations such as biexcitons [10]. This goes beyond the scope of the Hartree-Fock theory presented in
this work.

In Fig. S2 we illustrate the valley-specific effective dipole length as obtained from Eq. (S28) for the case of naturally
stacked hBN-encapsulated WSe2 homobilayers as a function of electric field, Ez at low temperatures, T = 10 K.
Intriguingly, we find a drastic increase in the dipole length at around Ez ± 0.15 V/nm. This reflects the transition
from a mostly intralayer KΛ (K’Λ’) state to a mostly interlayer KΛ’ (K’Λ) state under the application of a positive
(negative) electric field. At vanishing electric fields, KΛ and K’Λ’ excitons coexist. These excitons independently
interact via weak repulsive dipole-dipole interactions and mutually interact with each other via attractive dipolar
interactions as they exhibit opposite dipole orientations, giving rise to negligible effective dipole lengths. At the
largest considered electric fields, Ez = 0.3 V/nm, only KΛ’ excitons are relevant and the impact of other excitons
is negligible due to the large energy separations between exciton states (cf. Table S1). These excitons are mostly
interlayer-like in nature (|CIX |2 = 0.8, cf. Table S1) and interact strongly via dipole-dipole repulsion. Note that the
large effective dipole moment of KΛ’ excitons directly translates into large energy renormalizations (Eq. (S28)) and
give rise to sizable blue-shifts of phonon sidebands with exciton density, as schematically illustrated by the inset in
Fig. S2.

FIG. S2. Valley-specific effective dipole length in naturally stacked hBN-encapsulated WSe2 homobilayers. The valley-specific
dipole length dξ determines the corresponding energy renormalization δEξ ∼ dξnx for an individual exciton species ξ (cf. inset).
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