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Figures S1-S14.

Movie S1.

In situ bending test for a pillar with D=500 nm (speed up for seven times).

Movie S2.

In situ bending test for a pillar with D=300 nm (speed up for four times).

Movie S3.

In situ bending test for a pillar with D<300 nm (speed up for twelve times).

Movie S4.

Atomistic simulation of uniaxial compression on ZIF-62 glass with the dimension of
11.9 nm, 11.9 nm, and 13.84 nm.
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Figure S1. The hot-pressed machined used for fabricating ZIF-62 glass. The model is
OTF-1200X-VHP4, more information can be found on the official website of Hefei

Kejing Materials Technology Co., Ltd. (http://www .kjmti.com/product/14182.html).
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Figure S2. Optical observation of the ZIF-62 glass, (a) a piece of MOF glass, (b) no
bubbles or cracks were seen under the microscopic examination.



Morphology along the cross section

" g O
010nA 500KV 3500

Figure S3. SEM observation along the cross section, no microscale bubbles/pores and
cracks were evidenced in these figures.
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Figure S4. TEM examination along the cross section, the nanoscale observation
shows no bubbles/pores and cracks in our sample.



Map sum spectrum

Figure S5. Distribution of chemical elements from the EDS observation in SEM. The
elements were evenly distributed in our sample.
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Figure S6. Nanoscale examination along the cross section in TEM, no cracks and
bubbles/pores were presented, and the chemical elements were evenly distributed
along the cross section.
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Figure S7. MD simulated microstructural changes in ZIF-62 during melt-quenched
process. (a) 300 K, (b) 1500 K, (c) Glassy state. (d) Zn-N pair distribution function at
different state. (¢) The number of Zn-N bounds at different temperatures. At 300 K,
most of Zn-N bonds are four-fold types; whereas the four-fold Zn-N bounds at 1500 K
are broken into three-fold, two-fold, and one-fold ones, because Zn-N bounds tend to
be separated at high temperatures. At glassy state, there are four-fold and three-fold Zn-

N bonds, indicating that some Zn-N bounds reconnected during cooling down process.
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Figure S8. Cyclic loading on the pillars with D around 300 nm. (a) Cyclic stress-strain
curves under 7% strains, softening behavior is presented from the curves. (b) SEM
image shows that the deformed area locates at the top of the pillar, and deformation
occurs in a ductile way. (c¢) Cyclic stress-strain curves under 3% strains, cyclic softening
is also presented, though the applied strain is much smaller. (d) Ductile deformed

morphology is shown in the SEM image.



Brittle

Figure S9. Brittle-to-ductile transition in pillars of ZIF-62 glass under in-situ
mechanical testing. (a)-(c) The deformed morphologies of pillars with D=500 nm, 300
nm, and D<100 nm, respectively. From (a)-(c), we can see that a transition from brittle
state to ductile state is also observed in in-situ bending process. This figure confirms
that the ZIF-62 glass can be deformed in a ductile way under tensile loadings when

reducing the size below a critical value.
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Figure S10. In-situ bending a pillar with D=500 nm. (a)-(d) Images showing that the
pillar is bent with a W tip. The bottom (blue arrow indicated) is cracked during bending
process. (e)-(f) SEM images show that the shape of the pillar recovers around 15° after
unloading. This process indicates that the pillar with D=500 nm subjected to tensile

stress fails in a brittle manner.
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Figure S11. In-situ bending a pillar with D=300 nm. (a)-(d) SEM images show the in-
situ bending process. Cracking occurs at the bottom (white arrow indicated in ¢). (d)-
(e) SEM images show that the shape of the pillar recovers by 28° after unloadings. The
crack at the bottom (white arrow indicated in ¢ and e) suggests that the pillar with

D=300 nm fails brittlely.
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Figure S12. Plot of elastic modulus versus diameter, a trend of “smaller is stronger” is

observed.
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Figure S13. Ashby map of Young’s modulus versus density of ZIF-62 glass and other
structural materials. The modulus of ZIF-62 glass is overlapped with some non-
technical ceramics, and greater than that of foams, polymers, elastomers, and most of
natural materials. However, E of ZIF-62 glass is smaller than that of traditional glasses,

technical ceramics, and metal alloys, due to the relative weakness of Zn-N bonds

compared to others (e.g., Si-O).
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Figure S14. FEM simulation of bending a pillar (D=300 nm). (a) The stress-strain data

from experiment and simulation, which shows a good fitting. (b) Deformed
morphology of the bended pillar. (c) A similar morphology is attained from simulation,
and the principal stress shows the distribution of tensile and compressive stress in the

bended pillar.
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